Collection Of theses on high power laser and plasma physics, Volume. 13, Issue 1, 953214(2015)

Mechanism of internal modification in bulk borosilicate glass with picosecond laser pulses at high repetition rates

[in Chinese]1, [in Chinese]2,3, [in Chinese]2,3, and [in Chinese]1
Author Affiliations
  • 1Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Qinghe Road 390, Jiading District, Shanghai 201800, China
  • 2Fraunhofer-Institut für Lasertechnik, Steinbachstr. 15, 52074 Aachen, Germany
  • 3Nonlinear Dynamics of Laser Processing, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany
  • show less
    References(35)

    [1] [1] Gattass, R. R. and Mazur, E., “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219-225 (2008).

    [2] [2] Schaffer, C. B., Brodeur, A., Garcia, J. F. and Mazur, E., “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).

    [3] [3] Eaton, S. M., Zhang, H., Herman, P. R., Yoshino, F., Shah, L., Bovatsek, J. and Arai, A. Y., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).

    [4] [4] Osellame, R., Chiodo, N., Maselli, V., Yin, A., Zavelani-Rossi, M., Cerullo, G., Laporta, P., Aiello, L., De Nicola, S., Ferraro, P., Finizio, A. and Pierattini, G., “Optical properties of waveguides written by a 26MHz stretched cavity Ti:sapphire femtosecond oscillator,” Opt. Express 13, 612-620 (2005).

    [5] [5] Gattass, R. R., Cerami, L. R. and Mazur, E., “Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates,” Opt. Express 14, 5279-5284 (2006).

    [6] [6] Eaton, S. M., Zhang, H., Ng, M. L., Li, J., Chen, W., Ho, S. and Herman, P. R., “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443-9458 (2008).

    [7] [7] Miese, C., Withford, M. J. and Fuerbach, A., “Femtosecond laser direct-writing of waveguide Bragg gratings in a quasi cumulative heating regime,” Opt. Express 19, 19542-19550 (2011).

    [8] [8] Tamaki, T., Watanabe, W. and Itoh, K., “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10460-1048 (2006).

    [9] [9] Miyamoto, I., Cvecek, K. and Schmidt, M., “Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses,” Opt. Express 19, 10714-10727 (2011).

    [10] [10] Miyamoto, I., Cvecek, K., Okamoto, Y., Schmidt, M. and Helvajian, H., “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express 19, 22961-22973 (2011).

    [11] [11] Sugioka, K., Iida, M., Takai, H. and Micorikawa, K., “Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train,” Opt. Lett. 36, 2734-2736 (2011).

    [12] [12] Wu, S., Wu, D., Xu, J., Hanada, Y., Suganuma, R., Wang, H., Makimura, T., Sugioka, K. and Midorikawa, K., “Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation,” Opt. Express 20, 28893-28905 (2012).

    [13] [13] Zimmermann, F., Richter, S., Doering, S., Tuennermann, A. and Nolte, S., “Ultrastable bonding of glass with femtosecond laser bursts,” Appl. Opt. 52, 1149-1154 (2013).

    [14] [14] Sakakura, M., Shimizu, M., Shimotsuma, Y., Miura, K. and Hirao, K., “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).

    [15] [15] Yoshino, T., Matsumoto, M., Ozeki, Y. and Itoh, K., “Energy-dependent temperature dynamics in femtosecond laser microprocessing clarified by Raman temperature measurement,” Proc. SPIE 8249, 82491D (2012).

    [16] [16] Hermans, M., Gottmann, J. and Schiffer, A., “In-situ diagnostics on fs-laser induced modification of glasses for selective etching,” Proc. SPIE 8244, 82440E (2012).

    [17] [17] Shimizu, M., Sakakura, M., Ohnishi, M., Shimotsuma, Y., Nakaya, T., Miura, K. and Hirao, K., “Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses,” J. Appl. Phys. 108, 073533 (2010).

    [18] [18] Vogel, A., Novak, J., Hüttman, G. and Paltauf, G., “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).

    [19] [19] Sudrie, L., Couairon, A., Franco, M., Lamouroux, B., Prade, B., Tzorzakis, S. and Mysyrowicz, A., “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002).

    [20] [20] Arnold, C. L., Heisterkamp, A., Ertmer, W. and Lubatschowski, H., “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15, 10303-10317 (2007).

    [21] [21] Popov, K. I., McElcheran, C., Briggs, K., Mack, S. and Ramunno, L., “Morphology of femtosecond laser modification of bulk dielectrics,” Opt. Express 19, 271-282 (2011).

    [22] [22] Jiao, J. and Guo, Z., “Modeling of ultrashort pulsed laser ablation in water and biological tissues in cylindrical coordinates,” Appl. Phys. B 103, 195-205 (2011).

    [23] [23] Rayner, D. M., Naumov, A. and Corkum, P. B., “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express 13, 3208-3217 (2005).

    [24] [24] Burakov, I. M., Bulgakova, N. M., Stoian, R., Mermillod-Blondin, A., Audouard, E., Rosenfeld, A., Husakou, A. and Hertel, I. V., “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101, 043506 (2007).

    [25] [25] Sun, M., Eppelt, U., Russ, S., Hartmann, C., Siebert, C., Zhu, J. and Schulz, W., “Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses,” Opt. Express 21, 7858-7867 (2013).

    [26] [26] Kennedy, P. K., “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I – Theory,” IEEE J. Quant. Electron. 31, 2241-2249 (1995).

    [27] [27] Yoshino, F., Shah, L., Fermann, M., Arai, A. and Uehara, Y., “Micromachining with a high repetition rate femtosecond laser,” J. Laser Micro/Nanoeng. 3, 157-162 (2008).

    [28] [28] Schott D263 Material Information Sheet http://www.schott.com/advanced_optics/english/download/.

    [29] [29] Sun, Q., Jiang, H., Liu, Y., Zhou, Y., Yang, H. and Gong, Q., “Relaxation of dense electron plasma induced by femtosecond laser in dielectric materials,” Chin. Phys. Lett. 23, 189-192 (2006).

    [30] [30] Gulley, J. R., Winkler, S. W., Dennis, W. M., Liebig, C. M. and Stoian, R., “Interaction of ultrashort-laser pulses with induced undercritical plasmas in fused silica,” Phys. Rev. A 85, 013808 (2012).

    [31] [31] Shimizu, M., Sakakura, M., Ohnishi, M., Yamaji, M., Shimotsuma, Y., Hirao, K. and Miura, K., “Threedimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates,” Opt. Express 20, 934-940 (2012).

    [32] [32] Hoehm, S., Rosenfeld, A., Krueger, J. and Bonse, J., “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112, 014901 (2012).

    [33] [33] Englert, L., Rethfeld, B., Hagg, L., Wollenhaupt, M., Sarpe-Tudoran, C. and Baumert, T., “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855-17862 (2007).

    [34] [34] Nagata, T., Kamata, M. and Obara, M., “Optical waveguide fabrication with double pulse femtosecond lasers,” Appl. Phys. Lett. 86, 251103 (2005).

    [35] [35] Wortmann, D., Ramme, M. and Gottmann, J., “Refractive index modification using fs-laser double pulses,” Opt. Express 15, 10149-10153 (2007).

    Tools

    Get Citation

    Copy Citation Text

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Mechanism of internal modification in bulk borosilicate glass with picosecond laser pulses at high repetition rates[J]. Collection Of theses on high power laser and plasma physics, 2015, 13(1): 953214

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: May. 27, 2017

    The Author Email:

    DOI:10.1117/12.2185518

    Topics