Acta Optica Sinica, Volume. 39, Issue 9, 0930002(2019)

Estimation of Soil Organic Matter Content Based on Characteristic Variable Selection and Regression Methods

Guanwen Li1,2、**, Xiaohong Gao、*, Nengwen Xiao2, and Yunfei Xiao1
Author Affiliations
  • 1 Qinghai Provincial Key Laboratory of Physical Geography and Environmental Process, School of Geography Sciences, Qinghai Normal University, Xining, Qinghai 810008, China
  • 2 Chinese Research Academy of Environmental Sciences, Beijing 100012, China
  • show less
    References(31)

    [1] Nan F, Zhu H F, Bi R T. Hyperspectral prediction of soil organic matter content in the reclamation cropland of coal mining areas in the Loess Plateau[J]. Scientia Agricultura Sinica, 49, 2126-2135(2016).

    [2] [2] MishraU, Torn MS, MasanetE, et al. Improving regional soil carbon inventories: combining the IPCC carbon inventory method with regression kriging[J]. Geoderma, 2012, 189/190: 288-295.

    [3] [3] St LuceM, ZiadiN, Zebarth BJ, et al. Rapid determination of soil organic matter quality indicators using visible near infrared reflectance spectroscopy[J]. Geoderma, 2014, 232/233/234: 449-458.

    [4] Liu Y Q, Chen H Y, Wang R Y et al. Quantitative analysis of soil salt and its main ions based on visible/near infrared spectroscopy in estuary area of Yellow River[J]. Scientia Agricultura Sinica, 49, 1925-1935(2016).

    [5] Liu H J, Zhang B, Liu D W et al. Study on quantitatively remote sensing typical soils in Songnen plain, northeast China[J]. Journal of Remote Sensing, 12, 647-654(2008).

    [6] Lu Y L, Bai Y L, Yang L P et al. Prediction and validation of soil organic matter content based on hyperspectrum[J]. Scientia Agricultura Sinica, 40, 1989-1995(2007).

    [8] Zhu Y X, Yu L, Hong Y S et al. Hyperspectral features and wavelength variables selection methods of soil organic matter[J]. Scientia Agricultura Sinica, 50, 4325-4337(2017).

    [9] Vohland M, Ludwig M, Harbich M et al. Using variable selection and wavelets to exploit the full potential of visible-near infrared spectra for predicting soil properties[J]. Journal of Near Infrared Spectroscopy, 24, 255-269(2016).

    [10] Lin Z D, Wang Y B, Wang R J et al. Improvements of the vis-NIRS model in the prediction of soil organic matter content using spectral pretreatments, sample selection, and wavelength optimization[J]. Journal of Applied Spectroscopy, 84, 529-534(2017).

    [11] Nawar S, Buddenbaum H, Hill J et al. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy[J]. Soil and Tillage Research, 155, 510-522(2016).

    [12] Viscarra Rossel R A, Rizzo R, Demattê J A M et al. . Spatial modeling of a soil fertility index using visible-near-infrared spectra and terrain attributes[J]. Soil Science Society of America Journal, 74, 1293-1300(2010).

    [13] Li M J, Zhang M Y, Cui L J et al. Inversion of Hg content in reed leaf using continuous wavelet transformation and random forest[J]. Chinese Journal of Eco-Agriculture, 26, 1730-1738(2018).

    [15] Li G W, Gao X H, Yang L Y et al. Estimating soil organic matter contents from different soil particle size using visible and near-infrared reflectance spectrum-a case study of the Huangshui basin[J]. Chinese Journal of Soil Science, 48, 1360-1370(2017).

    [16] Conforti M, Castrignanò A, Robustelli G et al. Laboratory-based vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content[J]. Catena, 124, 60-67(2015).

    [20] Song X Z. Research of three new wavelength selection methods in near infrared spectroscopy quantitative analysis area[D]. Beijing: China Agricultural University(2017).

    [21] Chen H Y, Zhao G X, Zhang X H et al. Hyperspectral characteristic and estimation modeling of fluvo-aquic soil alkali hydrolysable nitrogen content based on genetic algorithm in combination with partial least squares[J]. Chinese Agricultural Science Bulletin, 31, 209-214(2015).

    [22] Yun Y H, Wang W T, Tan M L et al. A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration[J]. Analytica Chimica Acta, 807, 36-43(2014).

    [23] Yu L, Hong Y S, Zhou Y et al. Wavelength variable selection methods for estimation of soil organic matter content using hyperspectral technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 32, 95-102(2016).

    [24] Zhang J J, Tian Y C, Zhu Y et al. A near-infrared spectral index for estimating soil organic matter content[J]. Chinese Journal of Applied Ecology, 20, 1896-1904(2009).

    [25] Krishnan P, Alexander J D, Butler B J et al. Reflectance technique for predicting soil organic matter 1[J]. Soil Science Society of America Journal, 44, 1282-1285(1980).

    [26] Ben-Dor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal, 59, 364-372(1995).

    [27] AbdelRahman A M, Pawling J, Ryczko M et al. . Targeted metabolomics in cultured cells and tissues by mass spectrometry: method development and validation[J]. Analytica Chimica Acta, 845, 53-61(2014).

    [28] Nawar S, Mouazen A M. Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques[J]. Catena, 151, 118-129(2017).

    [29] Rossel R A V, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra[J]. Geoderma, 158, 46-54(2010).

    [30] Douglas R K, Nawar S, Alamar M C et al[J]. regression techniques. Science of the Total Environment, 616/617, 147-155(2018).

    [31] Gao H Z, Lu Q P, Ding H Q et al. Robust calibration methods of near-infrared spectrum based on random sample consensus algorithm[J]. Acta Optica Sinica, 33, s230001(2013).

    Tools

    Get Citation

    Copy Citation Text

    Guanwen Li, Xiaohong Gao, Nengwen Xiao, Yunfei Xiao. Estimation of Soil Organic Matter Content Based on Characteristic Variable Selection and Regression Methods[J]. Acta Optica Sinica, 2019, 39(9): 0930002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Mar. 5, 2019

    Accepted: May. 5, 2019

    Published Online: Sep. 9, 2019

    The Author Email: Guanwen Li (lgw126522@163.com), Xiaohong Gao (xiaohonggao226@163.com)

    DOI:10.3788/AOS201939.0930002

    Topics