Opto-Electronic Engineering, Volume. 48, Issue 5, 200331(2021)
A few-shot learning based generative method for atmospheric polarization modelling
[1] [1] Foster J J, Temple S E, How M J, et al. Polarisation vision: overcoming challenges of working with a property of light we barely see[J]. Sci Nat, 2018, 105(3–4): 27.
[2] [2] Powell S B, Garnett R, Marshall J, et al. Bioinspired polarization vision enables underwater geolocalization[J]. Sci Adv, 2018, 4(4): eaao6841.
[4] [4] Deschamps P Y, Breon F M, Leroy M, et al. The POLDER mission: instrument characteristics and scientific objectives[J]. IEEE Trans Geosci Remote Sens, 1994, 32(3): 598–615.
[6] [6] Jin Y Q. Electromagnetic Scattering Modelling for Quantitative Remote Sensing[M]. Singapore: World Scientific, 1994: 87–145.
[7] [7] Kirschvink J L, Gould J L. Biogenic magnetite as a basis for magnetic field detection in animals[J]. Biosystems, 1981, 13(3): 181–201.
[8] [8] Voss K J. Electra-optic camera system for measurement of the underwater radiance distribution[J]. Opt Eng, 1989, 28(3): 283241.
[9] [9] Horváth G, Wehner R. Skylight polarization as perceived by desert ants and measured by video polarimetry[J]. J Comp Physiol A, 1999, 184(1): 1–7.
[10] [10] Bhandari P, Voss K J, Logan L. An instrument to measure the downwelling polarized radiance distribution in the ocean[J]. Opt Express, 2011, 19(18): 17609–17620.
[15] [15] Lu H, Zhao K C, Wang X C, et al. Real-time imaging orientation determination system to verify imaging polarization navigation algorithm[J]. Sensors, 2016, 16(2): 144.
[16] [16] Lu H, Zhao K C, You Z, et al. Real-time polarization imaging algorithm for camera-based polarization navigation sensors[J]. Appl Opt, 2017, 56(11): 3199–3205.
[17] [17] He X, Li L L, Chen J B, et al. Research of polarization navigation system based on division-of-amplitude[C]//Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, Nanjing, China, 2016: 306–311.
[18] [18] He X, Li L L, Zhang X S, et al. The division-of-amplitude polarization navigation angle sensor design[C]//Proceedings of 2016 35th Chinese Control Conference, Chengdu, China, 2016: 5357–5361.
[24] [24] Cox D R. The regression analysis of binary sequences[J]. J Roy Stat Soc: Ser B (Methodol), 1958, 20(2): 215–232.
[25] [25] Cherkassky V, Ma Y Q. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Netw, 2004, 17(1): 113–126.
[26] [26] K?ll L, Krogh A, Sonnhammer E L L. A combined transmembrane topology and signal peptide prediction method[J]. J Mol Biol, 2004, 338(5): 1027–1036.
[27] [27] Xu X M, Guo Y W, Wang Z F. Cloud image detection based on Markov Random Field[J]. J Electron (China), 2012, 29(3–4): 262–270.
[28] [28] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
[29] [29] Li F F, Fergus R, Perona P. One-shot learning of object categories[J]. IEEE Trans Pattern Anal Mach Intell, 2006, 28(4): 594–611.
[30] [30] Lake B M, Ullman T D, Tenenbaum J B, et al. Building machines that learn and think like people[J]. Behav Brain Sci, 2017, 40: e253.
[31] [31] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks[J]. arXiv preprint arXiv:1703.03400, 2017.
[32] [32] Li Z G, Zhou F W, Chen F, et al. Meta-SGD: learning to learn quickly for few-shot learning[Z]. arXiv:1707.09835, 2017.
[33] [33] Sung F, Yang Y X, Zhang L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1199–1208.
[34] [34] Pathak D, Kr?henbühl P, Donahue J, et al. Context encoders: feature learning by inpainting[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA. arXiv:1604.07379v2[cs.CV].
[35] [35] Liu H Y, Jiang B, Xiao Y, et al. Coherent semantic attention for image inpainting[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019.
[36] [36] Suhai B, Horváth G. How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study[J]. J Opt Soc Am A, 2004, 21(9): 1669–1676.
[37] [37] Emde C, Buras-Schnell R, Kylling A, et al. The libRadtran software package for radiative transfer calculations (version 2.0.1)[J]. Geosci Model Dev, 2016, 9(5): 1647–1672.
[38] [38] Mayer B, Kylling A. Technical note: the libRadtran software package for radiative transfer calculations-description and examples of use[J]. Atmos Chem Phys, 2005, 5(7): 1855–1877.
Get Citation
Copy Citation Text
Gan Xin, Gao Xinjian, Zhong Binbin, Wang Xin, Ye Zirui, Gao Jun. A few-shot learning based generative method for atmospheric polarization modelling[J]. Opto-Electronic Engineering, 2021, 48(5): 200331
Category: Article
Received: Sep. 7, 2020
Accepted: --
Published Online: Sep. 4, 2021
The Author Email: Xinjian Gao (gaoxinjian@hfut.edu.cn)