Laser & Optoelectronics Progress, Volume. 57, Issue 2, 21502(2020)

Augmented Reality Recognition Registration Method Based on Text Features

Li Xueting1,2、*, Dang Jianwu1,2, Wang Yangping1,2, and Gao Fanyi1,2
Author Affiliations
  • 1School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
  • 2Gansu Provincial Engineering Research Center for Artificial Intelligence and Graphics & Image Processing, Lanzhou, Gansu 730070, China
  • show less
    Figures & Tables(13)
    AR recognition registration process based on text features
    FAST feature point detection
    FREAK retina sampling mode
    Center symmetrical sampling point pair
    Improved corner points of FASText
    Matching results of text images of class A. (a) SURF algorithm; (b) ORB algorithm;(c) FREAK algorithm; (d) improved FREAK algorithm
    Matching results of text images of class B. (a) SURF algorithm; (b) ORB algorithm;(c) FREAK algorithm; (d) improved FREAK algorithm
    Matching results of text images of class C. (a) SURF algorithm; (b) ORB algorithm;(c) FREAK algorithm; (d) improved FREAK algorithm
    Recognition registration for image A. (a) Positive registration; (b) distance and rotation change registration; (c) occlusion registration;(d) perspective change registration
    Recognition registration for image B. (a) Positive registration; (b) distance and rotation change registration; (c) occlusion registration;(d) perspective change registration
    Recognition registration for image C. (a) Positive registration; (b) distance and rotation change registration; (c) occlusion registration; (d) perspective change registration
    • Table 1. Comparison of average running time, average number of feature point pairs, and matching precision of algorithms

      View table

      Table 1. Comparison of average running time, average number of feature point pairs, and matching precision of algorithms

      ParameterSURFORBFREAKImproved FREAK
      ABCABCABCABC
      Average running time /ms36.655.257.634.538.239.333.836.537.631.832.733.1
      Contrast of averagerunning time /%-13.1-40.7-42.5-7.8-14.3-15.7-5.9-10.4-11.9---
      Average number offeature point pairs358572607336509535324469498302338342
      Contrast of average numberof feature point pairs /%-15.6-40.9-43.6-10.1-33.5-36.0-6.7-27.9-31.3---
      Precision /%69.664.262.376.975.574.678.776.275.487.885.484.6
    • Table 2. Average processing time of different algorithmsms

      View table

      Table 2. Average processing time of different algorithmsms

      AlgorithmImageprocessingFeatureextractionFeaturematchingPoseestimationModelrenderingTotal time
      SURF1.321.618.18.76.456.1
      ORB1.318.217.59.86.453.2
      FREAK1.316.815.49.86.449.7
      Improved FREAK1.315.113.89.86.446.4
    Tools

    Get Citation

    Copy Citation Text

    Li Xueting, Dang Jianwu, Wang Yangping, Gao Fanyi. Augmented Reality Recognition Registration Method Based on Text Features[J]. Laser & Optoelectronics Progress, 2020, 57(2): 21502

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 6, 2019

    Accepted: --

    Published Online: Jan. 3, 2020

    The Author Email: Li Xueting (LiXueting510@163.com)

    DOI:10.3788/LOP57.021502

    Topics