Journal of Innovative Optical Health Sciences, Volume. 15, Issue 2, 2230005(2022)

Application of super-resolution fluorescence microscopyin hematologic malignancies

Yalan Yu1, Jianing Yu1, Zhen-Li Huang2、*, and and Fuling Zhou1
Author Affiliations
  • 1Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
  • 2Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
  • show less
    References (78)

    [1] Y. Tan, Q. Wu, F. Zhou, "Targeting acute myeloid leukemia stem cells: Current therapies in development and potential strategies with new dimensions," Crit. Rev. Oncol./Hematol. 152, 102993 (2020).

    [2] D. Kazandjian, "Multiple myeloma epidemiology and survival: A unique malignancy," Seminars in Oncology, pp. 676–681, Elsevier (2016).

    [3] J. Thiele, H. M. Kvasnicka, D. W. Beelen, P. Wenzel, M. L. Koepke, L. D. Leder, U. W. Schaefer, "Macrophages and their subpopulations following allogeneic bone marrow transplantation for chronic myeloid leukaemia," Virchows Arch. 437, 160–166 (2000).

    [4] M. V. Firsova, L. P. Mendeleeva, A. M. Kovrigina, M. V. Solovev, V. G. Savchenko, "Plasmacytoma in patients with multiple myeloma: Morphology and immunohistochemistry," BMC Cancer 20, 346 (2020).

    [5] C. H. Dunphy, "Applications of flow cytometry and immunohistochemistry to diagnostic hematopathology," Arch. Pathol. Lab. Med. 128, 1004–1022 (2004).

    [6] J. W. Prichard, "Overview of Automated Immunohistochemistry," Arch. Pathol. Lab. Med. 138, 1578–1582 (2014).

    [7] S. V. Rajkumar, M. A. Dimopoulos, A. Palumbo, J. Blade, G. Merlini, M.-V. Mateos, S. Kumar, J. Hillengass, E. Kastritis, P. Richardson, "International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma," Lancet Oncol. 15, e538–e548 (2014).

    [8] G. An, X. Qin, C. Acharya, Y. Xu, S. Deng, L. Shi, M. Zang, W. Sui, S. Yi, Z. Li, "Multiple myeloma patients with low proportion of circulating plasma cells had similar survival with primary plasma cell leukemia patients," Ann. Hematol. 94, 257–264 (2015).

    [9] W. I. Gonsalves, S. V. Rajkumar, V. Gupta, W. G. Morice, M. M. Timm, P. P. Singh, A. Dispenzieri, F. K. Buadi, M. Q. Lacy, P. Kapoor, "Quantiflcation of clonal circulating plasma cells in newly diagnosed multiple myeloma: Implications for redeflning highrisk myeloma," Leukemia 28, 2060–2065 (2014).

    [10] B. Paiva, T. Paino, J.-M. Sayagues, M. Garayoa, L. San-Segundo, M. Martin, I. Mota, M.-L. Sanchez, P. Baarcena, I. Aires-Mejia, "Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution proflle," Blood 122, 3591–3598 (2013).

    [11] Q. Cheng, L. Cai, Y. Zhang, L. Chen, Y. Hu, C. Sun, "Circulating plasma cells as a biomarker to predict newly diagnosed multiple myeloma prognosis: Developing nomogram prognostic models," Front. Oncol. 11, 639528 (2021).

    [12] S. Kumar, B. Paiva, K. C. Anderson, B. Durie, O. Landgren, P. Moreau, N. Munshi, S. Lonial, J. Bladae, M.-V. Mateos, "International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma," Lancet Oncol. 17, e328–e346 (2016).

    [13] G. J. Schuurhuis, M. Heuser, S. Freeman, M.-C. Baenae, F. Buccisano, J. Cloos, D. Grimwade, T. Haferlach, R. K. Hills, C. S. Hourigan, J. L. Jorgensen, W. Kern, F. Lacombe, L. Maurillo, C. Preudhomme, B. A. van der Reijden, C. Thiede, A. Venditti, P. Vyas, B. L. Wood, R. B. Walter, K. Doohner, G. J. Roboz, G. J. Ossenkoppele, "Minimal/measurable residual disease in AML: A consensus document from the European Leukemia-Net MRD Working Party," Blood 131, 1275–1291 (2018).

    [14] M. L. Chase, P. Armand, "Minimal residual disease in non-Hodgkin lymphoma – current applications and future directions," Br. J. Haematol. 180, 177–188 (2018).

    [15] S. Modvig, H. Hallbooook, H. O. Madsen, S. Siitonen, S. Rosthoj, A. Tierens, V. Juvonen, L. T. N. Osnes, H. Valerhaugen, M. Hultdin, R. Matuzeviciene, M. Stoskus, M. Marincevic, A. Lilleorg, M. Ehinger, U. Noraen-Nystrom, N. Toft, M. Taskinen, O. G. Jonsson, K. Pruunsild, G. Vaitkeviciene, K. Vettenranta, B. Lund, J. Abrahamsson, A. Porwit, K. Schmiegelow, H. V. Marquart, "Value of flow cytometry for MRD-based relapse prediction in Bcell precursor ALL in a multicenter setting," Leukemia 35, 1894–1906 (2021).

    [16] R. Mina, S. Oliva, M. Boccadoro, "Minimal residual disease in multiple myeloma: State of the art and future perspectives," J. Clin. Med. 9, 2142 (2020).

    [17] B. Paiva, R. Martinez-Martinez, R. Maldonado, A. Sureda, R. Garcia-Sanz, M. Calasanz, J. Bargay, A. Oriol, R. Rios, L. Burgos, "Measurable residual disease by next-generation flow cytometry in multiple myeloma," J. Clin. Oncol. 38, 784–792 (2020).

    [18] Q. Yao, Y. Bai, A. Orfao, C. S. Chim, "Standardized minimal residual disease detection by next-generation sequencing in multiple myeloma," Front. Oncol. 9, 449 (2019).

    [19] A. Medina, N. Puig, J. Flores-Montero, C. Jimenez, M.-E. Sarasquete, M. Garcia-Alvarez, I. Prieto-Conde, C. Chillon, M. Alcoceba, N. C. Gutierrez, "Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma," Blood Cancer J. 10, 108 (2020).

    [20] K. Kriegsmann, M. Hundemer, N. Hofmeister-Mielke, P. Reichert, C.-P. Manta, M. H. Awwad, S. Sauer, U. Bertsch, B. Besemer, R. Fenk, "Comparison of NGS and MFC methods: Key metrics in multiple myeloma MRD assessment," Cancers 12, 2322 (2020).

    [21] A. Gozzetti, D. Raspadori, F. Bacchiarri, A. Sicuranza, P. Pacelli, I. Ferrigno, D. Tocci, M. Bocchia, "Minimal residual disease in multiple Myeloma: State of the art and applications in clinical practice," J. Pers. Med. 10, 120 (2020).

    [22] E. I. Atli, H. Gurkan, H. O. Kirkizlar, E. Atli, S. Demir, S. Yalcintepe, R. Kalkan, A. Demir, "Pros and cons for fluorescent in situ hybridization, karyotyping and next generation sequencing for diagnosis and follow-up of multiple Myeloma," Balk. J. Med. Genet. 23, 59 (2020).

    [23] Y. Bai, K. Y. Wong, T. K. Fung, C. S. Chim, "High applicability of ASO-RQPCR for detection of minimal residual disease in multiple myeloma by entirely patient-speciflc primers/probes," J. Hematol. Oncol. 9, 107 (2016).

    [24] Q. Yao, Y. Bai, S. Kumar, E. Au, A. Orfao, C. S. Chim, "Minimal residual disease detection by nextgeneration sequencing in multiple myeloma: A comparison with real-time quantitative PCR," Front. Oncol. 10, 611021 (2020).

    [25] M. H. Spitzer, G. P. Nolan, "Mass cytometry: Single cells, many features," Cell 165, 780–791 (2016).

    [26] S. J. Sahl, S. W. Hell, S. Jakobs, "Fluorescence nanoscopy in cell biology," Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    [27] C. Cremer, A. Szczurek, F. Schock, A. Gourram, U. Birk, "Super-resolution microscopy approaches to nuclear nanostructure imaging," Methods 123, 11–32 (2017).

    [28] M. Wang, L. Wang, X. Zheng, J. Zhou, J. Chen, Y. Zeng, J. Qu, Y. Shao, B. Z. Gao, "Nonlinear scanning structured illumination microscopy based on nonsinusoidal modulation," J. Innov. Opt. Health Sci. 14, 2142002 (2021).

    [29] M. Hausmann, N. Ilic, G. Pilarczyk, J.-H. Lee, A. Logeswaran, A. P. Borroni, M. Krufczik, F. Theda, N. Waltrich, F. Bestvater, "Challenges for super-resolution localization microscopy and biomolecular fluorescent nano-probing in cancer research," Int. J. Mol. Sci. 18, 2066 (2017).

    [30] Z. Nizamudeen, R. Markus, R. Lodge, C. Parmenter, M. Platt, L. Chakrabarti, V. Sottile, "Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging," Biochim. Biophys. Acta-Mol. Cell Res. 1865, 1891–1900 (2018).

    [31] S. Pujals, L. Albertazzi, "Super-resolution microscopy for nanomedicine research," ACS Nano 13, 9707–9712 (2019).

    [32] R. Jungmann, M. S. Avendano, J. B. Woehrstein, M. Dai, W. M. Shih, P. Yin, "Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT," Nat. Meth. 11, 313–318 (2014).

    [33] P. Delcanale, B. Miret-Ontiveros, M. Arista-Romero, S. Pujals, L. Albertazzi, "Nanoscale mapping functional sites on nanoparticles by points accumulation for imaging in nanoscale topography (PAINT)," ACS Nano 12, 7629–7637 (2018).

    [34] R. Gootz, "Super-resolution microscopy of plasma membrane receptors and intracellular pathogens," Doctoral thesis, Julius-Maximilians-Universitat Wurzburg (2020).

    [35] T. Ould-Bachir, H. Saad, S. Dennetiere, J. Mahseredjian, "CPU/FPGA-based real-time simulation of a two-terminal MMC-HVDC system," IEEE Trans. Power Deliv. 32, 647–655 (2017).

    [36] J. Patrick, "Click chemistry facilitates direct labelling and super-resolution imaging of nucleic acids and proteins," RSC Adv. 4, 30462–30466 (2014).

    [37] L. Mockl, W. E. Moerner, "Super-resolution microscopy with single molecules in biology and beyondessentials, current trends, and future challenges," J. Am. Chem. Soc. 142, 17828–17844 (2020).

    [38] J. Molle, L. Jakob, J. Bohlen, M. Raab, P. Tinnefeld, D. Grohmann, "Towards structural biology with super-resolution microscopy," Nanoscale 10, 16416–16424 (2018).

    [39] A. Yadav, C. Rao, C. K. Nandi, "Fluorescent probes for super-resolution microscopy of lysosomes," ACS Omega 5, 26967–26977 (2020).

    [40] M. A. Neil, R. Juskaitis, T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905–1907 (1997).

    [41] M. G. Gustafsson, L. Shao, P. M. Carlton, C. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, J. W. Sedat, "Three-dimensional resolution doubling in wide-fleld fluorescence microscopy by structured illumination," Biophys. J. 94, 4957–4970 (2008).

    [42] R. Strack, "Hessian structured illumination microscopy," Nat. Meth. 2018, 407 (2018).

    [43] Y. Ma, D. Li, Z. J. Smith, D. Li, K. Chu, "Structured illumination microscopy with interleaved reconstruction (SIMILR)," J. Biophoton. 11, e201700090 (2018).

    [44] Y. Ruan, D. Dan, M. Zhang, M. Bai, M. Lei, B. Yao, X. Yang, "Visualization of the 3D structures of small organisms via LED-SIM," Front. Zool. 13, 26 (2016).

    [45] Y. Wu, H. Shroff, "Faster, sharper, and deeper: Structured illumination microscopy for biological imaging," Nat. Meth. 15, 1011–1019 (2018).

    [46] F. Kraus, E. Miron, J. Demmerle, T. Chitiashvili, A. Budco, Q. Alle, A. Matsuda, H. Leonhardt, L. Schermelleh, Y. Markaki, "Quantitative 3D structured illumination microscopy of nuclear structures," Nat. Protocols 12, 1011–1028 (2017).

    [47] L. Xu, Y. Zhang, S. Lang, H. Wang, H. Hu, J. Wang, Y. Gong, "Structured illumination microscopy based on asymmetric three-beam interference," J. Innov. Opt. Health Sci. 14, 2050027 (2021).

    [48] L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, J. W. Sedat, "Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy," Science 320, 1332–1336 (2008).

    [49] Y. Z. Xu, R. H. Xu, Z. Wang, Y. Zhou, Q. F. Shen, W. C. Ji, D. F. Dang, L. J. Meng, B. Tang, "Recent advances in luminescent materials for super-resolution imaging via stimulated emission depletion nanoscopy," Chem. Soc. Rev. 50, 667–690 (2021).

    [50] M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. Brown, D. M. Davis, C. Dunsby, M. A. Neil, P. M. French, "3-D stimulated emission depletion microscopy with programmable aberration correction," J. Biophoton. 7, 29–36 (2014).

    [51] J. C. Wang, M. Bolger-Munro, M. R. Gold, "Visualizing the actin and microtubule cytoskeletons at the B-cell immune synapse using stimulated emission depletion (STED) microscopy," J. Visual. Exp. 9, 57028 (2018).

    [52] B. Huang, W. Wang, M. Bates, X. Zhuang, "Threedimensional super-resolution imaging by stochastic optical reconstruction microscopy," Science 319, 810–813 (2008).

    [53] L. Pan, P. Zhang, F. Hu, R. Yan, M. He, W. Li, J. Xu, K. Xu, "Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release," Adv. Sci. 6, 1900865 (2019).

    [54] S. Van de Linde, A. Looschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, M. Sauer, "Direct stochastic optical reconstruction microscopy with standard fluorescent probes," Nat. Protocols 6, 991–1009 (2011).

    [55] J. Xu, H. Ma, Y. Liu, "Stochastic optical reconstruction microscopy (STORM)," Curr. Protoc. Cytom. 81, 12.46. 11–12.46. 27 (2017).

    [56] E. Jensen, D. J. Crossman, "Technical review: Types of imaging—direct STORM," Anat. Rec. 297, 2227–2231 (2014).

    [57] K. J. Hands, D. Cuchet-Lourenco, R. D. Everett, R. T. Hay, "PML isoforms in response to arsenic: High-resolution analysis of PML body structure and degradation," J. Cell Sci. 127, 365–375 (2014).

    [58] Y. Xi, D. Wang, T. Wang, L. Huang, X. E. Zhang, "Quantitative proflling of CD13 on single acute myeloid leukemia cells by super-resolution imaging and its implication in targeted drug susceptibility assessment," Nanoscale 11, 1737–1744 (2019).

    [59] A. Garitano-Trojaola, A. Sancho, R. Goetz, S. Walz, H. Jetani, E. Teufel, N. Rodhes, M. DaVia, L. Haertle, S. Nerreter, C. Vogt, J. Duell, R. Tibes, S. Kraus, A. Rosenwald, L. Rasche, M. Hudecek, M. Sauer, H. Einsele, J. Groll, M. Kortum, "RAC1 inhibitor EHT1864 and venetoclax overcome midostaurin resistance in Acute Myeloid Leukemia," Blood 134, 1277 (2019).

    [60] A. Garitano-Trojaola, A. Sancho, R. Gootz, P. Eiring, S. Walz, H. Jetani, J. Gil-Pulido, M. C. Da Via, E. Teufel, N. Rhodes, L. Haertle, E. Arellano-Viera, R. Tibes, A. Rosenwald, L. Rasche, M. Hudecek, M. Sauer, J. Groll, H. Einsele, S. Kraus, M. K. Kortum, "Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia," Commun. Biol. 4, 799 (2021).

    [61] M. Sampietro, M. Zamai, A. D. Torres, V. L. Cantarero, F. Barbaglio, L. Scarfo, C. Scielzo, V. R. Caiolfa, "3D-STED super-resolution microscopy reveals distinct nanoscale organization of the hematopoietic cell-speciflc lyn substrate-1 (HS1) in normal and Leukemic B cells," Front. Cell Dev. Biol. 9, 655773 (2021).

    [62] C. Hoischen, S. Monajembashi, K. Weisshart, P. Hemmerich, "Multimodal light microscopy approachesto reveal structural and functional properties of Promyelocytic Leukemia nuclear bodies," Front. Oncol. 8, 125 (2018).

    [63] M. A. Gomes de Castro, H. Wildhagen, S. Sograte-Idrissi, C. Hitzing, M. Binder, M. Trepel, N. Engels, F. Opazo, "Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane," Nat. Commun. 10, 820 (2019).

    [64] C. G. K. Ziegler, J. Kim, K. Piersanti, A. Oyler-Yaniv, K. V. Argyropoulos, M. R. M. van den Brink, M. L. Palomba, N. Altan-Bonnet, G. Altan-Bonnet, "Constitutive activation of the B Cell receptor underlies dysfunctional signaling in chronic Lymphocytic Leukemia," Cell Rep. 28, 923–937 (2019).

    [65] H. Jetani, I. Garcia-Cadenas, T. Nerreter, R. Goetz, J. Sierra, H. Bonig, M. Sauer, H. Einsele, M. Hudecek, "FLT3 inhibitor treatment increases FLT3 expression that exposes FLT3-ITD+ AML blasts to elimination by FLT3 CAR-T cells," Blood 132, 903 (2018).

    [66] A. Guffei, R. Sarkar, L. Klewes, C. Righolt, H. Knecht, S. Mai, "Dynamic chromosomal rearrangements in Hodgkin's lymphoma are due to ongoing three-dimensional nuclear remodeling and breakagebridge-fusion cycles," Haematologica 95, 2038–2046 (2010).

    [67] A. T. Szczurek, F. Contu, R. Vanni, H. Knecht, N. Johnson, T. Haliotis, S. Mai, "Abstract 367: Methods to enhance the optical resolution for 3DSIM for the study of Hodgkin's lymphoma nuclei," Cancer Res. 78, 367 (2018).

    [68] A. Szczurek, F. Contu, A. Hoang, J. Dobrucki, S. Mai, "Aqueous mounting media increasing tissue translucence improve image quality in structured illumination microscopy of thick biological specimen," Sci. Rep. 8, 13971 (2018).

    [69] S. Sograte-Idrissi, T. Schlichthaerle, C. J. Duque-Afonso, M. Alevra, S. Strauss, T. Moser, R. Jungmann, S. O. Rizzoli, F. Opazo, "Circumvention of common labelling artefacts using secondary nanobodies," Nanoscale 12, 10226–10239 (2020).

    [70] J. M. Hartley, R. Zhang, M. Gudheti, J. Yang, J. Kopecek, "Tracking and quantifying polymer therapeutic distribution on a cellular level using 3D dSTORM," J. Control. Release 231, 50–59 (2016).

    [71] S. V. Rajkumar, "Multiple myeloma: 2020 update on diagnosis, risk-stratiflcation and management," Ame. J. Hematol. 95, 548–567 (2020).

    [72] C. Sathitruangsak, C. H. Righolt, L. Klewes, P. Tammur, T. Ilus, A. Tamm, M. Punab, A. Olujohungbe, S. Mai, "Quantitative superresolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined signiflcance," J. Cell. Biochem. 116, 704–710 (2015).

    [73] T. Nerreter, S. Letschert, R. Gootz, S. Doose, S. Danhof, H. Einsele, M. Sauer, M. Hudecek, "Superresolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T," Nat. Commun. 10, 1–11 (2019).

    [74] E. Garcia-Guerrero, L. G. Rodriguez-Lobato, S. Danhof, B. Sierro-Martinez, R. Goetz, M. Sauer, J. A. Perez-Simon, H. Einsele, M. Hudecek, S. Prommersbe, "ATRA augments BCMA expression on Myeloma cells and enhances recognition by BCMACAR T-cells," Blood 136, 13–14 (2020).

    [75] E. Garcia-Guerrero, R. Gootz, S. Doose, M. Sauer, A. Rodriguez-Gil, T. Nerreter, K. M. Kortum, J. A. Paerez-Simon, H. Einsele, M. Hudecek, "Upregulation of CD38 expression on multiple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the e±cacy of daratumumab," Leukemia 35, 201–214 (2021).

    [76] S. A. Shelby, D. Holowka, B. Baird, S. L. Veatch, "Distinct stages of stimulated Fc"RI receptor clustering and immobilization are identifled through superresolution imaging," Biophys. J. 105, 2343–2354 (2013).

    [77] L. M. Weatherly, A. J. Nelson, J. Shim, A. M. Riitano, E. D. Gerson, A. J. Hart, J. de Juan-Sanz, T. A. Ryan, R. Sher, S. T. Hess, J. A. Gosse, "Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation," Toxicol. Appl. Pharmacol. 349, 39–54 (2018).

    [78] M. B. Stone, S. A. Shelby, S. L. Veatch, "Superresolution microscopy: Shedding light on the cellular plasma membrane," Chem. Rev. 117, 7457–7477 (2017).


    Get Citation

    Copy Citation Text

    Yalan Yu, Jianing Yu, Zhen-Li Huang, and Fuling Zhou. Application of super-resolution fluorescence microscopyin hematologic malignancies[J]. Journal of Innovative Optical Health Sciences, 2022, 15(2): 2230005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Sep. 29, 2021

    Accepted: Dec. 22, 2021

    Published Online: Feb. 28, 2022

    The Author Email: Huang Zhen-Li (



    Please enter the answer below before you can view the full text.