Laser & Optoelectronics Progress, Volume. 61, Issue 10, 1037006(2024)

Efficient Global Attention Networks for Image Super-Resolution Reconstruction

Qingqing Wang1,2, Yuelan Xin1,2、*, Jia Zhao2, Jiang Guo1,2, and Haochen Wang2
Author Affiliations
  • 1The College of Computer, Qinghai Normal University, Xining 810001, Qinghai, China
  • 2The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810001, Qinghai, China
  • show less
    References(38)

    [1] Zhang L, Wu X L. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Transactions on Image Processing, 15, 2226-2238(2006).

    [2] Rhee S, Kang M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm[J]. Optical Engineering, 38, 1348-1356(1999).

    [3] Dong C, Loy C C, He K M, Fleet D, Pajdla T, Schiele B et al. Learning a deep convolutional network for image super-resolution[M]. Computer vision-ECCV 2014. Lecture notes in computer science, 8692, 184-199(2014).

    [4] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C], 1646-1654(2016).

    [5] Xu X Y, Deng H P, Xiang S et al. Light field image super-resolution based on feature interaction fusion and attention mechanism[J]. Laser & Optoelectronics Progress, 60, 1410017(2023).

    [6] Dai T, Cai J R, Zhang Y B et al. Second-order attention network for single image super-resolution[C], 11057-11066(2020).

    [7] Niu B, Wen W L, Ren W Q, Vedaldi A, Bischof H, Brox T et al. Single image super-resolution via a holistic attention network[M]. Computer vision-ECCV 2020. Lecture notes in computer science, 12357, 191-207(2020).

    [8] Mei Y Q, Fan Y C, Zhou Y Q. Image super-resolution with non-local sparse attention[C], 3516-3525(2021).

    [9] Li X. Image super-resolution reconstruction based on residual compensation combined attention network[J]. Journal of Electronics and Information Science, 8, 48-55(2023).

    [10] Hui Z, Wang X M, Gao X B. Fast and accurate single image super-resolution via information distillation network[C], 723-731(2018).

    [11] Ahn N, Kang B, Sohn K A, Ferrari V, Hebert M, Sminchisescu C et al. Fast, accurate, and lightweight super-resolution with cascading residual network[M]. Computer vision-ECCV 2018. Lecture notes in computer science, 11214, 256-272(2018).

    [12] Hui Z, Gao X B, Yang Y C et al. Lightweight image super-resolution with information multi-distillation network[C], 2024-2032(2019).

    [13] Ding Z X, Zhang J, Li X et al. Lightweight attention-guided network for image super-resolution[J]. Laser & Optoelectronics Progress, 60, 1410010(2023).

    [14] Guo X X, Tu Z C, Li G Y et al. A novel lightweight multi-dimension feature fusion network for single-image super-resolution reconstruction[J]. The Visual Computer, 1-12(2023).

    [16] Wang L G, Dong X Y, Wang Y Q et al. Exploring sparsity in image super-resolution for efficient inference[C], 4915-4924(2021).

    [18] Chen W J, Huang G H, Mo F et al. Image super-resolution reconstruction algorithm based on hierarchical information adaptive aggregation[J]. Computer Engineering and Applications, 60, 221-231(2024).

    [19] Zhang X D, Zeng H, Zhang L. Edge-oriented convolution block for real-time super resolution on mobile devices[C], 4034-4043(2021).

    [21] Li Z Y, Liu Y Q, Chen X Y et al. Blueprint separable residual network for efficient image super-resolution[C], 832-842(2022).

    [22] Li Y W, Zhang K, Timofte R et al. NTIRE 2022 challenge on efficient super-resolution: methods and results[C], 1061-1101(2022).

    [23] Lai W S, Huang J B, Ahuja N et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2599-2613(2019).

    [24] Huang Z L, Wang X G, Huang L C et al. CCNet: criss-cross attention for semantic segmentation[C], 603-612(2020).

    [25] Zhao H Y, Kong X T, He J W, Bartoli A, Fusiello A et al. Efficient image super-resolution using pixel attention[M]. Computer vision-ECCV 2020 workshops. Lecture notes in computer science, 12537, 56-72(2020).

    [26] Kong F Y, Li M X, Liu S W et al. Residual local feature network for efficient super-resolution[C], 765-775(2022).

    [27] Agustsson E, Timofte R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C], 1122-1131(2017).

    [28] Zhong M Y, Jiang L. Review of super-resolution image reconstruction algorithms[J]. Journal of Frontiers of Computer Science and Technology, 16, 972-990(2022).

    [29] Bevilacqua M, Roumy A, Guillemot C et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C], 1-10(2012).

    [30] Zeyde R, Elad M, Protter M, Boissonnat J D, Chenin P, Cohen A et al. On single image scale-up using sparse-representations[M]. Curves and surfaces. Lecture notes in computer science, 6920, 711-730(2012).

    [31] Martin D, Fowlkes C, Tal D et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C], 416-423(2002).

    [32] Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C], 5197-5206(2015).

    [33] Matsui Y, Ito K, Aramaki Y et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Applications, 76, 21811-21838(2017).

    [34] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [35] Liu J, Chen C, Tang J et al. From coarse to fine: hierarchical pixel integration for lightweight image super-resolution[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 1666-1674(2023).

    [36] Zhang X D, Zeng H, Guo S, Avidan S, Brostow G, Cissé M et al. Efficient long-range attention network for image super-resolution[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13677, 649-667(2022).

    [37] Peng Y F, Zhang M T, Zhang P J et al. Single-image super-resolution reconstruction aggregating residual attention network[J]. Laser & Optoelectronics Progress, 60, 1010017(2023).

    [38] Chen L Y, Chu X J, Zhang X Y, Avidan S, Brostow G, Cissé M et al. Simple baselines for image restoration[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13667, 17-33(2022).

    Tools

    Get Citation

    Copy Citation Text

    Qingqing Wang, Yuelan Xin, Jia Zhao, Jiang Guo, Haochen Wang. Efficient Global Attention Networks for Image Super-Resolution Reconstruction[J]. Laser & Optoelectronics Progress, 2024, 61(10): 1037006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Sep. 5, 2023

    Accepted: Oct. 20, 2023

    Published Online: May. 9, 2024

    The Author Email: Yuelan Xin (xinyue001112@163.com)

    DOI:10.3788/LOP232053

    CSTR:32186.14.LOP232053

    Topics