Chinese Journal of Lasers, Volume. 50, Issue 3, 0307110(2023)

Non‐Contact and In Vivo Polarization Imaging Method for Measuring Facial Skin Structures and Characteristics

Yuxin Zhang1, Zhipeng Fan1, Haoyu Zhai1, Honghui He1、*, Yi Wang2、**, Chao He3, and Hui Ma1
Author Affiliations
  • 1Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
  • 2Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
  • 3Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
  • show less
    References(61)

    [1] Waterhouse D J, Fitzpatrick C R M, Pogue B W et al. A roadmap for the clinical implementation of optical-imaging biomarkers[J]. Nature Biomedical Engineering, 3, 339-353(2019).

    [2] Chen R, Huang B H, Wang Y Y et al. The optical model of human skin[J]. Acta Laser Biology Sinica, 14, 401-404(2005).

    [3] Arda O, Göksügür N, Tüzün Y. Basic histological structure and functions of facial skin[J]. Clinics in Dermatology, 32, 3-13(2014).

    [4] Moore K L, Persaud T V N, Torchia M G[M]. The developing human: clinically oriented embryology(2018).

    [5] Dursun R, Daye M, Durmaz K. Acne and rosacea: what’s new for treatment?[J]. Dermatologic Therapy, 32, e13020(2019).

    [6] Wa C V, Maibach H I. Mapping the human face: biophysical properties[J]. Skin Research and Technology, 16, 38-54(2010).

    [7] Abdlaty R, Hayward J, Farrell T et al. Skin erythema and pigmentation: a review of optical assessment techniques[J]. Photodiagnosis and Photodynamic Therapy, 33, 102127(2021).

    [8] Logger J G M, Jong E M G J D, Driessen R J B et al. Evaluation of a simple image-based tool to quantify facial erythema in rosacea during treatment[J]. Skin Research and Technology, 26, 804-812(2020).

    [9] Xi P, Liu Y J, Yao Z R et al. Optical imaging techniques in skin imaging diagnosis[J]. Chinese Journal of Lasers, 38, 0201001(2011).

    [10] Rosenberg A, Meyerle J H. Total-body photography in skin cancer screening: the clinical utility of standardized imaging[J]. Cutis, 99, 312-316(2017).

    [11] Schneider S L, Kohli I, Hamzavi I H et al. Emerging imaging technologies in dermatology: part I: basic principles[J]. Journal of the American Academy of Dermatology, 80, 1114-1120(2019).

    [12] Yuan J, Zhao Y J, Kong L Q et al. Simulation analysis of skin diffuse reflectance spectroscopy and skin color with blood component change[J]. Acta Optica Sinica, 42, 0817001(2022).

    [13] Zheng J S, Wu H X, Hu Y H. Visible light diffuse reflectance of neonatal skin under different skin color conditions[J]. Laser&Optoelectronics Progress, 59, 1630003(2022).

    [14] Chen Q, Qin W, Qi W et al. Progress of clinical translation of handheld and semi-handheld photoacoustic imaging[J]. Photoacoustics, 22, 100264(2021).

    [15] Zhou Y, Tripathi S V, Rosman I et al. Noninvasive determination of melanoma depth using a handheld photoacoustic probe[J]. The Journal of Investigative Dermatology, 137, 1370-1372(2017).

    [16] Ma H G, Cheng Z W, Wang Z Y et al. Switchable optical and acoustic resolution photoacoustic dermoscope dedicated into in vivo biopsy-like of human skin[J]. Applied Physics Letters, 116, 073703(2020).

    [17] Kang X, Zhang Y, Ren H M et al. An approach for extracting optical and physiological parameters of human skin tissue based on spatial frequency domain imaging[J]. Chinese Journal of Lasers, 49, 0507210(2022).

    [18] Wang J P, Chen M H, Tan W J et al. Dual-modality endoscopic probe for optical coherence tomography imaging and pH sensing[J]. Chinese Journal of Lasers, 47, 0907001(2020).

    [19] Wu S L, Li H, Li Z F et al. Optical parameter of skin based on optical coherence tomography scattering model and K-M theory[J]. Chinese Journal of Lasers, 36, 206-209(2009).

    [20] Askaruly S, Ahn Y, Kim H et al. Quantitative evaluation of skin surface roughness using optical coherence tomography in vivo[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 7202308(2019).

    [21] Qi M J, Liu L X, Li Y R et al. Design and experiment of push-broom hyperspectral microscopic imaging system[J]. Chinese Journal of Lasers, 49, 2007105(2022).

    [22] Wu P, Ni J S, Hong H O et al. Rapid non-invasive technology for skin cholesterol detection based on fluorescent spectrometry[J]. Chinese Journal of Lasers, 48, 0307002(2021).

    [23] Jacques S L, Ramella-Roman J C, Lee K M D. Imaging skin pathology with polarized light[J]. Journal of Biomedical Optics, 7, 329-340(2002).

    [24] He C, He H H, Chang J T et al. Polarisation optics for biomedical and clinical applications: a review[J]. Light: Science & Applications, 10, 194(2021).

    [25] He H H, Liao R, Zeng N et al. Mueller matrix polarimetry: an emerging new tool for characterizing the microstructural feature of complex biological specimen[J]. Journal of Lightwave Technology, 37, 2534-2548(2019).

    [26] Anderson R R. Polarized light examination and photography of the skin[J]. Archives of Dermatology, 127, 1000-1005(1991).

    [27] Dong Y, He H H, Sheng W et al. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry[J]. Scientific Reports, 7, 14702(2017).

    [28] Shen Y X, Yao Y, He H H et al. Mueller matrix polarimetry: a label-free, quantitative optical method for clinical diagnosis[J]. Chinese Journal of Lasers, 47, 0207001(2020).

    [29] Du E, He H H, Zeng N et al. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues[J]. Journal of Biomedical Optics, 19, 076013(2014).

    [30] Zhai H Y, Sun Y, He H et al. Distinguishing tissue structures via polarization staining images based on different combinations of Mueller matrix polar decomposition parameters[J]. Optics and Lasers in Engineering, 152, 106955(2022).

    [31] Kohli I, Kastner S, Thomas M et al. Quantitative measurement of skin surface oiliness and shine using differential polarized images[J]. Archives of Dermatological Research, 313, 71-77(2021).

    [32] Kwon I H, Choi J E, Seo S H et al. Rosacea subtypes visually and optically distinct when viewed with parallel-polarized imaging technique[J]. Annals of Dermatology, 29, 167-172(2017).

    [33] Cao Y X, Zhang G Q, Lu Y N. Optical and mechanical design of polarization filtered dermoscopy[J]. Chinese Optics, 13, 273-280(2020).

    [34] Zhai H Y. Multimodal quantitative detection method of skin tissue based on polarization optics and its application[D](2022).

    [35] Rizova E, Kligman A. New photographic techniques for clinical evaluation of acne[J]. Journal of the European Academy of Dermatology and Venereology, 15, 13-18(2001).

    [36] Ly B C K, Dyer E B, Feig J L et al. Research techniques made simple: cutaneous colorimetry: a reliable technique for objective skin color measurement[J]. Journal of Investigative Dermatology, 140, 3-12(2020).

    [37] Xiao K, Yates J M, Zardawi F et al. Characterising the variations in ethnic skin colours: a new calibrated data base for human skin[J]. Skin Research and Technology, 23, 21-29(2017).

    [38] Jamil U, Akram M U, Khalid S et al. Computer based melanocytic and nevus image enhancement and segmentation[J]. BioMed Research International, 2016, 2082589(2016).

    [39] Stamatas G N, Zmudzka B Z, Kollias N et al. Non-invasive measurements of skin pigmentation in situ[J]. Pigment Cell Research, 17, 618-626(2004).

    [40] Song Y Q, Pan Y, Wang H et al. Mapping the face of young population in China: influence of anatomical sites and gender on biophysical properties of facial skin[J]. Skin Research and Technology, 25, 325-332(2019).

    [41] Cho C, Ruan P Y, Lee E et al. Comparison of skin color between two Asian populations: according to latitude and UV exposure[J]. Journal of Cosmetic Dermatology, 14, 22-26(2015).

    [42] Meng L, Liu J, Cao H et al. Retinal vessel segmentation based on Frangi filter and Otsu algorithm[J]. Laser&Optoelectronics Progress, 56, 181004(2019).

    [43] Frangi A F, Niessen W J, Vincken K L et al. Multiscale vessel enhancement filtering[C], 1496, 130-137(1998).

    [44] Ng C C, Yap M H, Costen N et al. Automatic wrinkle detection using hybrid Hessian filter[C], 9005, 609-622(2015).

    [45] Wang X, Shu X, Li Z et al. Comparison of two kinds of skin imaging analysis software: VISIA® from Canfield and IPP® from Media Cybernetics[J]. Skin Research and Technology, 24, 379-385(2018).

    [46] Huang W S, Wang Y W, Hung K C et al. High correlation between skin color based on CIELAB color space, epidermal melanocyte ratio, and melanocyte melanin content[J]. PeerJ, 6, e4815(2018).

    [47] Chen Y J, Hua W, Li A Q et al. Analysis of facial redness by comparing VISIA® from Canfield and CSKIN® from Yanyun technology[J]. Skin Research and Technology, 26, 696-701(2020).

    [48] Pratchyapruit W, Kikuchi K, Gritiyarangasan P et al. Functional analyses of the eyelid skin constituting the most soft and smooth area on the face: contribution of its remarkably large superficial corneocytes to effective water-holding capacity of the stratum corneum[J]. Skin Research and Technology, 13, 169-175(2007).

    [49] Seitz J C, Whitmore C G. Measurement of erythema and tanning responses in human skin using a tri-stimulus colorimeter[J]. Dermatology, 177, 70-75(1988).

    [50] Park S B, Huh C H, Choe Y B et al. Time course of ultraviolet-induced skin reactions evaluated by two different reflectance spectrophotometers: DermaSpectrophotometer® and Minolta spectrophotometer CM-2022®[J]. Photodermatology, Photoimmunology & Photomedicine, 18, 23-28(2002).

    [51] del Bino S, Bernerd F. Variations in skin colour and the biological consequences of ultraviolet radiation exposure[J]. British Journal of Dermatology, 169, 33-40(2013).

    [52] del Bino S, Ito S, Sok J et al. Chemical analysis of constitutive pigmentation of human epidermis reveals constant eumelanin to pheomelanin ratio[J]. Pigment Cell & Melanoma Research, 28, 707-717(2015).

    [53] Cole C. Global data of unprotected skin minimal erythema dose relationship to individual typology angle[J]. Photodermatology, Photoimmunology & Photomedicine, 36, 452-459(2020).

    [54] Ambroisine L, Ezzedine K, Elfakir A et al. Relationships between visual and tactile features and biophysical parameters in human facial skin[J]. Skin Research and Technology, 13, 176-183(2007).

    [55] Voegeli R, Gierschendorf J, Summers B et al. Facial skin mapping: from single point bio-instrumental evaluation to continuous visualization of skin hydration, barrier function, skin surface pH, and sebum in different ethnic skin types[J]. International Journal of Cosmetic Science, 41, 411-424(2019).

    [56] Park S R, Han J, Yeon Y M et al. Effect of face mask on skin characteristics changes during the COVID-19 pandemic[J]. Skin Research and Technology, 27, 554-559(2021).

    [57] Tagami H. Location-related differences in structure and function of the stratum corneum with special emphasis on those of the facial skin[J]. International Journal of Cosmetic Science, 30, 413-434(2008).

    [58] Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin-relationship to the anatomical location on the body, age, sex and physical parameters[J]. Archives of Dermatological Research, 291, 555-559(1999).

    [59] Tsukahara K, Hotta M, Osanai O et al. Gender-dependent differences in degree of facial wrinkles[J]. Skin Research and Technology, 19, e65-e71(2013).

    [60] Austin E, Geisler A N, Nguyen J et al. Visible light. Part I: properties and cutaneous effects of visible light[J]. Journal of the American Academy of Dermatology, 84, 1219-1231(2021).

    [61] Zhang S B, Duan E K. Fighting against skin aging: the way from bench to bedside[J]. Cell Transplantation, 27, 729-738(2018).

    Tools

    Get Citation

    Copy Citation Text

    Yuxin Zhang, Zhipeng Fan, Haoyu Zhai, Honghui He, Yi Wang, Chao He, Hui Ma. Non‐Contact and In Vivo Polarization Imaging Method for Measuring Facial Skin Structures and Characteristics[J]. Chinese Journal of Lasers, 2023, 50(3): 0307110

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Biomedical Optical Imaging

    Received: Sep. 14, 2022

    Accepted: Dec. 15, 2022

    Published Online: Feb. 6, 2023

    The Author Email: He Honghui (he.honghui@sz.tsinghua.edu.cn), Wang Yi (prof.wangyi@foxmail.com)

    DOI:10.3788/CJL221241

    Topics