Acta Optica Sinica, Volume. 44, Issue 6, 0601013(2024)

Retrieval of Aerosol Particle Size Distribution from Multi-Wavelength Lidar

Xiaotao Li1,2, Dong Liu1,2,3,4、*, Da Xiao1, Kai Zhang1, Xianzhe Hu1, Weize Li1, Lei Bi5, Wenbo Sun2, Lan Wu1, Chong Liu1, and Jiesong Deng1
Author Affiliations
  • 1State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 2Donghai Laboratory, Zhoushan 316021, Zhejiang , China
  • 3Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, Zhejiang , China
  • 4Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang , China
  • 5Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    References(32)

    [1] Mao J T, Zhang J H, Wang M H. Summary comment on research of atmospheric aerosl in China[J]. Acta Meteorologica Sinica, 60, 625-634(2002).

    [2] Giorgi F, Bi X Q, Qian Y. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: a regional coupled climate-chemistry/aerosol model study[J]. Journal of Geophysical Research: Atmospheres, 107, AAC7-1(2002).

    [3] Shang Q, Li Z H, Yang J et al. Size distributions of aerosol particles and the impact on visibility in winter of Nanjing[J]. Environmental Science, 32, 2750-2760(2011).

    [4] Fan X H, Chen H B, Xia X A. Progress in observation studies of atmospheric aerosol radiative properties in China[J]. Chinese Journal of Atmospheric Sciences, 37, 477-498(2013).

    [5] Che H Z, Gui K, Xia X G et al. Large contribution of meteorological factors to inter-decadal changes in regional aerosol optical depth[J]. Atmospheric Chemistry and Physics, 19, 10497-10523(2019).

    [6] Zhu J, Zhu B, Huang Y et al. PM2.5 vertical variation during a fog episode in a rural area of the Yangtze River Delta, China[J]. Science of the Total Environment, 685, 555-563(2019).

    [7] Liu C, Huang J P, Wang Y W et al. Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event[J]. Science of the Total Environment, 704, 135329(2020).

    [8] Ke J, Sun Y S, Dong C Z et al. Development of China′s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 3, 1-20(2022).

    [9] Sun H Y, Wang S L, Hu X B et al. Detection of surface defects and subsurface defects of polished optics with multisensor image fusion[J]. PhotoniX, 3, 1-14(2022).

    [10] Huang Z T, Chang C Y, Chen K P et al. Tunable lasing direction in one-dimensional suspended high-contrast grating using bound states in the continuum[J]. Advanced Photonics, 4, 066004(2022).

    [11] Müller D, Wandinger U, Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory[J]. Applied Optics, 38, 2346-2357(1999).

    [12] Veselovskii I, Kolgotin A, Griaznov V et al. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding[J]. Applied Optics, 41, 3685-3699(2002).

    [13] Wang Y F, Gao F, Zhu C X et al. Raman lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optica Sinica, 35, 0328004(2015).

    [14] Wang K Q, Zhang M M, Tang J et al. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX, 2, 1-11(2021).

    [15] Jiang B, Zhu S, Ren L H et al. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity[J]. Advanced Photonics, 4, 046003(2022).

    [16] Müller D, Wandinger U, Ansmann A. Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation[J]. Applied Optics, 38, 2358-2368(1999).

    [17] Veselovskii I, Kolgotin A, Griaznov V et al. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution[J]. Applied Optics, 43, 1180-1195(2004).

    [18] Di H G, Wang Q Y, Hua H B et al. Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data[J]. Remote Sensing, 10, 1753(2018).

    [19] Donovan D P, Carswell A I. Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements[J]. Applied Optics, 36, 9406-9424(1997).

    [20] Veselovskii I, Dubovik O, Kolgotin A et al. Linear estimation of particle bulk parameters from multi-wavelength lidar measurements[J]. Atmospheric Measurement Techniques, 5, 1135-1145(2012).

    [21] Chemyakin E, Müller D, Burton S et al. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data[J]. Applied Optics, 53, 7252-7266(2014).

    [22] Ansmann A, Riebesell M, Wandinger U et al. Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio[J]. Applied Physics B, 55, 18-28(1992).

    [23] Liu D, Yang Y Y, Cheng Z T et al. Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties[J]. Optics Express, 21, 13084-13093(2013).

    [24] Xiao D, Wang N C, Shen X E et al. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: extinction retrieval[J]. Remote Sensing, 12, 3047(2020).

    [25] Bohren C F, Huffman D R. Absorption and scattering by a sphere[M]. Absorption and scattering of light by small particles, 82-129(1998).

    [26] Mishchenko M I, Travis L D, Kahn R A et al. Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids[J]. Journal of Geophysical Research: Atmospheres, 102, 16831-16847(1997).

    [27] Dubovik O, Holben B, Eck T F et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. Journal of the Atmospheric Sciences, 59, 590-608(2002).

    [28] Wei X D, Zhang H. Analysis of optical properties of nonspherical dust aerosols[J]. Acta Optica Sinica, 31, 0501002(2011).

    [29] Zhou M, Chang J H, Chen S C et al. Aerosol type recognition model based on naive Bayesian classifier[J]. Acta Optica Sinica, 42, 1801006(2022).

    [30] Wang N C, Xiao D, Veselovskii I et al. This is FAST: multivariate Full-permutAtion based Stochastic foresT method: improving the retrieval of fine-mode aerosol microphysical properties with multi-wavelength lidar[J]. Remote Sensing of Environment, 280, 113226(2022).

    [31] Böckmann C. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions[J]. Applied Optics, 40, 1329-1342(2001).

    [32] Müller D, Wagner F, Althausen D et al. Physical properties of the Indian aerosol plume derived from six-wavelength lidar Observations on 25 March 1999 of the Indian Ocean Experiment[J]. Geophysical Research Letters, 27, 1403-1406(2000).

    Tools

    Get Citation

    Copy Citation Text

    Xiaotao Li, Dong Liu, Da Xiao, Kai Zhang, Xianzhe Hu, Weize Li, Lei Bi, Wenbo Sun, Lan Wu, Chong Liu, Jiesong Deng. Retrieval of Aerosol Particle Size Distribution from Multi-Wavelength Lidar[J]. Acta Optica Sinica, 2024, 44(6): 0601013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 3, 2023

    Accepted: Sep. 6, 2023

    Published Online: Feb. 23, 2024

    The Author Email: Liu Dong (liudong@zju.edu.cn)

    DOI:10.3788/AOS231223

    CSTR:32393.14.AOS231223

    Topics