Journal of Inorganic Materials, Volume. 38, Issue 8, 901(2023)
[1] XU Z Y. Luminescence mechanism and structure characteristics of long afterglow phosphors[J]. Modern Chemical Research, 54(2017).
[2] ZHOU Z H, LI Y Y, PENG M Y. Near-infrared persistent phosphors: synthesis, design, and applications[J]. Chemical Engineering Journal(2020).
[3] HUANG K, LE N, WANG J S et al. Designing next generation of persistent luminescence: recent advances in uniform persistent luminescence nanoparticles[J]. Advance Materials(2022).
[8] BAI Q, WANNG Z J, LI P L et al. Zn2-
[9] CHI F F, WEI X T, JIANG B et al. Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors[J]. Dalton Transactins, 1303(2018).
[18] GAO D L, KUANG Q Q, GAO F et al. Achieving opto-responsive multimode luminescence in Zn1+
[19] LIU Z S, JING X P, WANG L X. Luminescence of native defects in Zn2GeO4[J]. Journal of The Electrochemical Society, 500(2007).
[23] WANG K, YAN L P, SHAO K et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium co-doped persistent luminescence materials Zn1+
Get Citation
Copy Citation Text
Qiqi ZENG, Yanzheng WU, Huangyu CHENG, kang SHAO, Tianyu HU, Zaifa PAN.
Category:
Received: Dec. 5, 2022
Accepted: --
Published Online: Dec. 28, 2023
The Author Email: Zaifa PAN (panzaifa@zjut.edu.cn)