Journal of Inorganic Materials, Volume. 39, Issue 9, 965(2024)
[1] TUMALA M M, SALISU A, NMADU Y B. Climate change fossil fuel prices: a GARCH-MIDAS analysis[J]. Energy Economics, 106792(2023).
[2] WU Y L, MA Y L, ZHENG H Y et al. Piezoelectric materials for flexible and wearable electronics: a review[J]. Materials & Design, 110164(2021).
[3] CHEN C, WANG X, WANG Y et al. Additive manufacturing of piezoelectric materials[J]. Advanced Functional Materials, 2005141(2020).
[4] ZHENG Q, SHI B J, LI Z et al. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems[J]. Advanced Science, 1700029(2017).
[5] MEGDICH A, HABIBI M, LAPERRIERE L et al. A review on 3D printed piezoelectric energy harvesters: materials, 3D printing techniques, and applications[J]. Materials Today Communications, 105541(2023).
[6] BICY K, GUEYE A B, ROUXEL D et al. Lithium-ion battery separators based on electrospun PVDF: a review[J]. Surfaces and Interfaces, 101977(2022).
[7] LEE J E, SHIN Y E, LEE G H et al. Polyvinylidene fluoride (PVDF)/cellulose nanocrystal (CNC) nanocomposite fiber and triboelectric textile sensors[J]. Composites Part B: Engineering, 109098(2021).
[8] RIBEIRO S, MEIRA R M, CORREIA D M et al. Silica nanoparticles surface charge modulation of the electroactive phase content and physical-chemical properties of poly(vinylidene fluoride) nanocomposites[J]. Composites Part B: Engineering, 107786(2020).
[9] TU N D K, NOH M S, KO Y et al. Enhanced electromechanical performance of P(VDF-TrFE-CTFE) thin films hybridized with highly dispersed carbon blacks[J]. Composites Part B: Engineering, 133(2018).
[10] JEONG K, KIM D H, CHUNG Y S et al. Effect of processing parameters of the continuous wet spinning system on the crystal phase of PVDF fibers[J]. Journal of Applied Polymer Science, 45712(2017).
[11] SHARAFKHANI S, KOKABI M. High performance flexible actuator: PVDF nanofibers incorporated with axially aligned carbon nanotubes[J]. Composites Part B: Engineering, 109060(2021).
[12] CHEN J, AYRANCI C, TANG T. Piezoelectric performance of electrospun PVDF and PVDF composite fibers: a review and machine learning-based analysis[J]. Materials Today Chemistry, 101571(2023).
[13] WANG Y, LEI D, WU L K et al. Effects of stretching on phase transformation of PVDF and its copolymers: a review[J]. Open Physics, 20220255(2023).
[14] BARRAU S, FERRI A, DACOSTA A et al. Nanoscale investigations of
[15] JIN L, MA S Y, DENG W L et al. Polarization-free high- crystallization
[16] WANG S, SHAO H Q, LIU Y et al. Boosting piezoelectric response of PVDF-TrFE
[17] YADAV P, RAJU T D, BADHULIKA S. Self-poled hBN-PVDF nanofiber mat-based low-cost, ultrahigh-performance piezoelectric nanogenerator for biomechanical energy harvesting[J]. ACS Applied Energy Materials, 1970(2020).
[18] KHAN F, KOWALCHIK T, ROUNDY S et al. Stretching-induced phase transitions in barium titanate-poly(vinylidene fluoride) flexible composite piezoelectric films[J]. Scripta Materialia, 64(2021).
[19] GEBREKRSTOS A, MADRAS G, BOSE S. Journey of electroactive
[20] LU L J, DING W Q, LIU J Q et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 105251(2020).
[21] YANG L, WANG H, FANG S P et al. Research progress on energy storage performance enhancement strategies for polyvinylidene fluoride based composites[J]. Journal of Alloys and Compounds, 170831(2023).
[23] WANG C, DONG C, PENG W et al. Research progress of lead-free piezoelectric ceramics[J]. China Ceramics, 1(2017).
[24] GAO X Y, WU J G, YU Y et al. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN-PZT for vibration energy harvesting[J]. Advanced Functional Materials, 1706895(2018).
[26] PEDDIGARI M, PARK J H, HAN J H et al. Flexible self- charging, ultrafast, high-power-density ceramic capacitor system[J]. ACS Energy Letters, 1383(2021).
[27] ZHANG Y, JEONG C K, YANG T N et al. Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting[J]. Journal of Materials Chemistry A, 14546(2018).
[28] GAO W X, YOU L, WANG Y J et al. Flexible PbZr0.52Ti0.48O3 capacitors with giant piezoelectric response and dielectric tunability[J]. Advanced Electronic Materials, 1600542(2017).
[29] ZENG Z, GAI L L, WANG X et al. A plastic-composite-plastic structure high performance flexible energy harvester based on PIN-PMN-PT single crystal/epoxy 2-2 composite[J]. Applied Physics Letters, 103501(2017).
[30] KIM H, NGUYEN D C, LUU T T et al. Recent advances in functional fiber-based wearable triboelectric nanogenerators[J]. Nanomaterials, 2718(2023).
[31] YANG C, SONG S P, CHEN F et al. Fabrication of PVDF/ BaTiO3/CNT piezoelectric energy harvesters with bionic balsa wood structures through 3D printing and supercritical carbon dioxide foaming[J]. ACS Applied Materials & Interfaces, 41723(2021).
[32] SONG L, DAI R X, LI Y J et al. Polyvinylidene fluoride energy harvester with boosting piezoelectric performance through 3D printed biomimetic bone structures[J]. ACS Sustainable Chemistry & Engineering, 7561(2021).
[33] WANG Z H, CHENG J, HU R C et al. An approach combining additive manufacturing and dielectrophoresis for 3D-structured flexible lead-free piezoelectric composites for electromechanical energy conversion[J]. Journal of Materials Chemistry A, 26767(2021).
[34] HUAN Y, ZHANG X S, SONG J A et al. High-performance piezoelectric composite nanogenerator based on Ag/(K, Na)NbO3 heterostructure[J]. Nano Energy, 62(2018).
[35] PEI H R, SHI S H, CHEN Y H et al. Combining solid state shear milling and FFF 3D-printing strategy to fabricate high-performance biomimetic wearable fish-scale PVDF-based piezoelectric energy harvesters[J]. ACS Applied Materials & Interfaces, 15346(2022).
[36] SORIMPUK N P, CHOONG W H, CHUA B L. Thermoforming characteristics of PLA/TPU multi-material specimens fabricated with fused deposition modelling under different temperatures[J]. Polymers, 4304(2022).
[37] LIU X G, SHANG Y H, ZHANG J H et al. Ionic liquid assisted 3D printing of self-polarized
[38] IKRAM H, ALRASHID A, KOC M. Additive manufacturing of smart polymeric composites: literature review and future perspectives[J]. Polymer Composites, 6355(2022).
[39] WANG Z H, YUAN X T, YANG J K et al. 3D-printed flexible, Ag-coated PNN-PZT ceramic-polymer grid-composite for electromechanical energy conversion[J]. Nano Energy, 104737(2020).
[40] CHEN F, YANG C, AN Z M et al. Direct-ink-writing of multistage-pore structured energy collector with ultrahigh ceramic content and toughness[J]. Materials & Design, 110652(2022).
[41] HAN C, HE L R, WANG Q et al. Solvent-exchange-assisted 3D printing of self-polarized high
[42] SIPONKOSKI T, NELO M, JANTUNEN H et al. A printable P(VDF-TrFE)-PZT composite with very high piezoelectric coefficient[J]. Applied Materials Today, 100696(2020).
[43] BODKHE S, TURCOT G, GOSSELIN F P et al. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures[J]. ACS Applied Materials & Interfaces, 20833(2017).
[44] TU R W, SPRAGUE E, SODANO H A et al. Precipitation-printed high-
[45] TABRIZ A G, KUOFIE H, SCOBLE J et al. Selective laser sintering for printing pharmaceutical dosage forms[J]. Journal of Drug Delivery Science and Technology, 104699(2023).
[46] SONG S P, HAN Y, LI Y J et al. 3D printed piezoelectric porous structure with enhanced output performance and stress-electricity response for road energy harvesting[J]. Additive Manufacturing, 103625(2023).
[47] LOW Z X, CHUA Y T, RAY B M et al. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques[J]. Journal of Membrane Science, 596(2017).
[48] LIU H C, MUKHERJEE S, LIU Y et al. Recent studies on electrospinning preparation of patterned, core-shell, and aligned scaffolds[J]. Journal of Applied Polymer Science, 45670(2018).
[49] WANG A D, LIU J H, SHAO C K et al. Electro-assisted 3D printing multi-layer PVDF/CaCl2 composite films and sensors[J]. Coatings, 820(2022).
[51] FEI J H, RONG Y J, ZHU L S et al. Progress in photocurable 3D printing of photosensitive polyurethane: a review[J]. Macromolecular Rapid Communications, 2300211(2023).
[52] SMIRNOV A, CHUGUNOV S, KHOLODKOVA A et al. Progress and challenges of 3D-printing technologies in the manufacturing of piezoceramics[J]. Ceramics International, 10478(2021).
[53] ALIQUE M, MOYA A, KREUZER M et al. Controlled poling of a fully printed piezoelectric PVDF-TrFE device as a multifunctional platform with inkjet-printed silver electrodes[J]. Journal of Materials Chemistry C, 11555(2022).
[54] LI H, LI R H, FANG X T et al. 3D printed flexible triboelectric nanogenerator with viscoelastic inks for mechanical energy harvesting[J]. Nano Energy, 447(2019).
[56] LEE H, CHOI B. A multilayer PVDF composite cantilever in the Helmholtz resonator for energy harvesting from sound pressure[J]. Smart Materials and Strutures, 115025(2013).
[57] JUNG W S, LEE M J, KANG M G et al. Powerful curved piezoelectric generator for wearable applications[J]. Nano Energy, 174(2015).
[58] YUAN X T, GAO X Y, YANG J K et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester[J]. Energy & Environmental Science, 152(2020).
[59] BHATTA T, MAHARJAN P, CHO H O et al. High-performance triboelectric nanogenerator based on Mxene functionalized polyvinylidene fluoride composite nanofibers[J]. Nano Energy, 105670(2021).
[60] KIM Y G, KIM K T, PARK S C et al. Enhanced poling efficiency via a maximized organic-inorganic interfacial effect for water droplet-driven energy harvesting[J]. Nano Energy, 107238(2022).
[61] ZHENG Q F, ZHANG H L, MI H Y et al. High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films[J]. Nano Energy, 504(2016).
[62] YAN A, YUAN X T, LI Z M et al. 3D-printed flexible, layered ceramic-polymer composite grid with integrated structural-self- sensing function[J]. Sensors and Actuators A: Physical, 113187(2021).
[63] YUAN X T, GAO X Y, SHEN X Y et al. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application[J]. Nano Energy, 105985(2021).
[64] LIU Y, DING L B, DAI L et al. All-ceramic flexible piezoelectric energy harvester[J]. Advanced Functional Materials, 2209297(2022).
[65] ZHOU X R, PARIDA K, HALEVI O et al. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure[J]. Nano Energy, 104676(2020).
[66] TIAN H G, SHAN X B, WANG H et al. Enhanced piezoelectric energy harvesting performance using trailing-edge flap[J]. Ocean Engineering, 115443(2023).
[67] PEI H R, XIE Y P, XIONG Y et al. A novel polarization free 3D printing strategy for fabrication of poly(vinylidene fluoride) based nanocomposite piezoelectric energy harvester[J]. Composites Part B: Engineering, 109312(2021).
[68] CHEN F, AN Z M, CHEN Y H et al. Multi-material 3D printing of piezoelectric and triboelectric integrated nanogenerators with voxel structure[J]. Chemical Engineering Journal, 144770(2023).
[70] CHEN C F, CAI F X, ZHU Y et al. 3D printing of electroactive PVDF thin films with high
[71] SONG S P, LI Y J, WANG Q et al. Boosting piezoelectric performance with a new selective laser sintering 3D printable PVDF/graphene nanocomposite[J]. Composites Part A: Applied Science and Manufacturing, 106452(2021).
[72] SHUAI C J, LIU G F, YANG Y W et al. A strawberry-like Ag- decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold[J]. Nano Energy, 104825(2020).
[73] QI F W, ZENG Z C, YAO J et al. Constructing core-shell structured BaTiO3 carbon boosts piezoelectric activity and cell response of polymer scaffolds[J]. Biomaterials Advances, 112129(2021).
[74] LIU J F, SHANG Y H, SHAO Z Z et al. Three-dimensional printing to translate simulation to architecting for three-dimensional high performance piezoelectric energy harvester[J]. Industrial & Engineering Chemistry Research, 433(2021).
[75] LIU X G, SHANG Y H, LIU J F et al. 3D printing-enabled
[76] HE L R, LU J, HAN C et al. Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized
[77] LIU X G, LIU J F, HE L R et al. 3D printed piezoelectric regulable cells with customized electromechanical response distribution for intelligent sensing[J]. Advanced Functional Materials, 2201274(2022).
[78] KIM H, TORRES F, WU Y Y et al. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application[J]. Smart Materials and Structures, 085027(2017).
[79] ZASZCZYŃSKA A, GRADYS A, SAJKIEWICZ P et al. Progress in the applications of smart piezoelectric materials for medical devices[J]. Polymers, 2754(2020).
[80] MAAMER B, BOUGHAMOURA A, ELBAB A M R F et al. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes[J]. Energy Conversion and Management, 111973(2019).
[81] TAKAHASHI K, ONO K, ARAI H et al. Detection of pathologic heart murmurs using a piezoelectric sensor[J]. Sensors, 1376(2021).
[82] SAWANE M, PRASAD M. MEMS piezoelectric sensor for self- powered devices: a review[J]. Materials Science in Semiconductor Processing, 107324(2023).
[83] YANG X, MENG J S, WANG Y et al. Novel formation of Bi@BiFe-glycolate hollow spheres and their conversion into Bi2O3/BiFeO3 composite hollow spheres with enhanced activity and durability in visible photocatalysis[J]. New Journal of Chemistry, 10697(2018).
[84] AZIMI S, ABOLHASANI A, MOOSAVI S M et al. Development of a vehicle passage sensor based on a PVDF nanogenerator[J]. ACS Applied Electronic Materials, 4689(2021).
[85] YAO D S, CUI H C, HENSLEIGH R et al. Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites[J]. Advanced Functional Materials, 1903866(2019).
[86] CACUCCIOLO V, SHINTAKE J, KUWAJIMA Y et al. Stretchable pumps for soft machines[J]. Nature, 516(2019).
[87] YANG T, PAN H, TIAN G et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics[J]. Nano Energy, 104706(2020).
[88] LIANG X W, ZHAO T, JIANG W et al. Highly transparent triboelectric nanogenerator utilizing
[89] GAUR A, TIWARI S, KUMAR C et al. Flexible, lead-free nanogenerators using poly(vinylidene fluoride) nanocomposites[J]. Energy & Fuels, 6239(2020).
[90] SU H X, WANG X B, LI C Y et al. Enhanced energy harvesting ability of polydimethylsiloxane-BaTiO3-based flexible piezoelectric nanogenerator for tactile imitation application[J]. Nano Energy, 105809(2021).
[91] QI F W, CHEN N, WANG Q. Preparation of PA11/BaTiO3nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selectivelaser sintering[J]. Materials & Design, 135(2017).
[92] DENG W L, YANG T, JIN L et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures[J]. Nano Energy, 516(2019).
[94] CHENG Y, XU Y, QIAN Y et al. 3D structured self-powered PVDF/PCL scaffolds for peripheral nerve regeneration[J]. Nano Energy, 104411(2020).
[95] LIANG J C, ZENG H J, QIAO L et al. 3D Printed piezoelectric wound dressing with dual piezoelectric response models for scar- prevention wound healing[J]. ACS Applied Materials & Interfaces, 30507(2022).
Get Citation
Copy Citation Text
Xiangxia WEI, Xiaofei ZHANG, Kailong XU, Zhangwei CHEN.
Category:
Received: Jan. 29, 2024
Accepted: --
Published Online: Dec. 13, 2024
The Author Email: Zhangwei CHEN (chen@szu.edu.cn)