Journal of Environmental and Occupational Medicine, Volume. 42, Issue 7, 884(2025)
Research advances on effects of ambient fine particulate matter on gut microbiota and potential mechanisms
[1] [1] World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide[R]. Geneva: World Health Organization, 2021.
[2] [2] BLUM J L, CHEN L C, ZELIKOFF J T. Exposure to Ambient Particulate Matter during Specific Gestational Periods Produces Adverse Obstetric Consequences in Mice[J]. Environ Health Perspect, 2017, 125(7): 077020.
[3] [3] XU X, LIU C, XU Z, et al. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue[J]. Toxicol Sci, 2011, 124(1): 88-98.
[4] [4] RAJILI-STOJANOVI M, DE VOS W M. The first 1000 cultured species of the human gastrointestinal microbiota[J]. FEMS Microbiol Rev, 2014, 38(5): 996-1047.
[5] [5] RINNINELLA E, RAOUL P, CINTONI M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases[J]. Microorganisms, 2019, 7(1): 14.
[6] [6] DERRIEN M, ALVAREZ A S, DE VOS W M. The Gut Microbiota in the First Decade of Life[J]. Trends Microbiol, 2019, 27(12): 997-1010.
[7] [7] MARCHESI J R, RAVEL J. The vocabulary of microbiome research: a proposal[J]. Microbiome, 2015, 3(1): 31.
[8] [8] VALLS Y, FRANCINO M P. Air Pollution, Early Life Microbiome, and Development[J]. Curr Environ Health Rep, 2018, 5(4): 512-521.
[9] [9] SALIM S Y, KAPLAN G G, MADSEN K L. Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease[J]. Gut Microbes, 2014, 5(2): 215-219.
[10] [10] TIAN L, QIU H, SUN S, et al. Association between emergency admission for peptic ulcer bleeding and air pollution: a case-crossover analysis in Hong Kong's elderly population[J]. Lancet Planet Health, 2017, 1(2): e74-e81.
[11] [11] ALDERETE T L, JONES R B, CHEN Z, et al. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents[J]. Environ Res, 2018, 161: 472-478.
[12] [12] ROSLUND M I, RANTALA S, OIKARINEN S, et al. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children[J]. Environ Int, 2019, 130: 104894.
[13] [13] LIU T, CHEN X, XU Y, et al. Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: evidence from a population-based epidemiological study[J]. Environ Int, 2019, 130: 104882.
[14] [14] ZHAO L, FANG J, TANG S, et al. PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China[J]. Environ Health Perspect, 2022, 130(2): 027007.
[15] [15] ZHENG P, ZHANG B, ZHANG K, et al. The Impact of Air Pollution on Intestinal Microbiome of Asthmatic Children: A Panel Study[J]. Biomed Res Int, 2020, 2020: 5753427.
[16] [16] YI W, JI Y, GAO H, et al. Does the gut microbiome partially mediate the impact of air pollutants exposure on liver function? Evidence based on schizophrenia patients[J]. Environ Pollut, 2021, 291: 118135.
[17] [17] MUTLU E A, COMBA I Y, CHO T, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome[J]. Environ Pollut, 2018, 240: 817-830.
[18] [18] KISH L, HOTTE N, KAPLAN G G, et al. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome[J]. PLoS One, 2013, 8(4): e62220.
[19] [19] FUJIMURA K E, DEMOOR T, RAUCH M, et al. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection[J]. Proc Natl Acad Sci U S A, 2014, 111(2): 805-810.
[20] [20] SALIM S Y, JOVEL J, WINE E, et al. Exposure to ingested airborne pollutant particulate matter increases mucosal exposure to bacteria and induces early onset of inflammation in neonatal IL-10-deficient mice[J]. Inflamm Bowel Dis, 2014, 20(7): 1129-1138.
[21] [21] LI R, YANG J, SAFFARI A, et al. Ambient ultrafine particle ingestion alters gut microbiota in association with increased atherogenic lipid metabolites[J]. Sci Rep, 2017, 7: 42906.
[22] [22] LI N, YANG Z, LIAO B, et al. Chronic exposure to ambient particulate matter induces gut microbial dysbiosis in a rat COPD model[J]. Respir Res, 2020, 21(1): 271.
[23] [23] CRAWFORD M S, NORDGREN T M, MCCOLE D F. Every breath you take: Impacts of environmental dust exposure on intestinal barrier functionfrom the gut-lung axis to COVID-19[J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(4): G586-G600.
[24] [24] WANG W, ZHOU J, CHEN M, et al. Exposure to concentrated ambient PM2.5 alters the composition of gut microbiota in a murine model[J]. Part Fibre Toxicol, 2018, 15(1): 17
[25] [25] SHAO W, PAN B, LI Z, et al. Gut microbiota mediates ambient PM2.5 exposure-induced abnormal glucose metabolism via short-chain fatty acids[J]. J Hazard Mater, 2024, 476: 135096.
[26] [26] LIU Y, WANG T, SI B, et al. Intratracheally instillated diesel PM2.5 significantly altered the structure and composition of indigenous murine gut microbiota[J]. Ecotoxicol Environ Saf, 2021, 210: 111903.
[27] [27] SHAN S, XIONG Y, GUO J, et al. Effect of an inulin-type fructan fromPlatycodon grandiflorumon the intestinal microbiota in rats exposed to PM2.5[J]. Carbohydr Polym, 2022, 283: 119147.
[28] [28] RAN Z, AN Y, ZHOU J, et al. Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice[J]. Environ Pollut, 2021, 272: 115987.
[29] [29] VAN DEN BRULE S, RAPPE M, AMBROISE J, et al. Diesel exhaust particles alter the profile and function of the gut microbiota upon subchronic oral administration in mice[J]. Part Fibre Toxicol, 2021, 18(1): 7.
[30] [30] FITCH M N, PHILLIPPI D, ZHANG Y, et al. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice[J]. Environ Res, 2020, 181: 108913.
[31] [31] DAI S, WANG Z, YANG Y, et al. PM2.5 induced weight loss of mice through altering the intestinal microenvironment: mucus barrier, gut microbiota, and metabolic profiling[J]. J Hazard Mater, 2022, 431: 128653.
[32] [32] ZHAO Y, CHEN X, SHEN J, et al. Black tea alleviates particulate matter-induced lung injury via the gut-lung axis in mice[J]. J Agric Food Chem, 2021, 69(50): 15362-15373.
[33] [33] XIE S, ZHANG C, ZHAO J, et al. Exposure to concentrated ambient PM2.5 (CAPM) induces intestinal disturbance via inflammation and alternation of gut microbiome[J]. Environ Int, 2022, 161: 107138.
[34] [34] CHEN D, XIAO C, JIN H, et al. Exposure to atmospheric pollutants is associated with alterations of gut microbiota in spontaneously hypertensive rats[J]. Exp Ther Med, 2019, 18(5): 3484-3492.
[35] [35] LIU W, ZHOU Y, QIN Y, et al. Quercetin intervention alleviates offspring's oxidative stress, inflammation, and tight junction damage in the colon induced by maternal fine particulate matter (PM2.5) exposure through the reduction of Bacteroides[J]. Nutrients, 2020, 12(10): 3095.
[36] [36] FU P, BAI L, CAI Z, et al. Fine particulate matter aggravates intestinal and brain injury and affects bacterial community structure of intestine and feces in Alzheimer's disease transgenic mice[J]. Ecotoxicol Environ Saf, 2020, 192: 110325.
[37] [37] LIU W, ZHOU Y, YONG L, et al. Effects of PM2.5 exposure during gestation on maternal gut microbiota and pregnancy outcomes[J]. Chemosphere, 2020, 247: 125879.
[38] [38] LIU W, ZHOU Y, QIN Y, et al. Sex-specific effects of PM2.5 maternal exposure on offspring's serum lipoproteins and gut microbiota[J]. Sci Total Environ, 2020, 739: 139982.
[39] [39] YANG K, XU M, CAO J, et al. Ultrafine particles altered gut microbial population and metabolic profiles in a sex-specific manner in an obese mouse model[J]. Sci Rep, 2021, 11(1): 6906.
[40] [40] LIU J, SU X, LU J, et al. PM2.5 induces intestinal damage by affecting gut microbiota and metabolites of rats fed a high-carbohydrate diet[J]. Environ Pollut, 2021, 279: 116849.
[41] [41] DUTTA M, WEIGEL K M, PATTEN K T, et al. Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer's disease[J]. Toxicol Rep, 2022, 9: 432-444.
[42] [42] PARK S K, KANG J Y, KIM J M, et al. Water extract of Ecklonia cava protects against fine dust (PM2.5)-induced health damage by regulating gut health[J]. J Microbiol Biotechnol, 2022, 32(7): 927-937.
[43] [43] PARK S K, KANG J Y, KIM J M, et al.Porphyra teneraprotects against PM2.5-induced cognitive dysfunction with the regulation of gut function[J]. Mar Drugs, 2022, 20(7): 439.
[44] [44] LAIMAN V, LO Y C, CHEN H C, et al. Effects of antibiotics and metals on lung and intestinal microbiome dysbiosis after sub-chronic lower-level exposure of air pollution in ageing rats[J]. Ecotoxicol Environ Saf, 2022, 246: 114164.
[45] [45] PHILLIPPI D T, DANIEL S, PUSADKAR V, et al. Inhaled diesel exhaust particles result in microbiome-related systemic inflammation and altered cardiovascular disease biomarkers in C57Bl/6 male mice[J]. Part Fibre Toxicol, 2022, 19(1): 10.
[46] [46] DONG X, YAO S, DENG L, et al. Alterations in the gut microbiota and its metabolic profile of PM2.5 exposure-induced thyroid dysfunction rats[J]. Sci Total Environ, 2022, 838(Pt 3): 156402.
[47] [47] YI W, JI Y, GAO H, et al. Effects of urban particulate matter on gut microbiome and partial schizophrenia-like symptoms in mice: evidence from shotgun metagenomic and metabolomic profiling[J]. Sci Total Environ, 2023, 857(Pt 1): 159305.
[48] [48] YAN D, ZHANG T, SU J, et al. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days[J]. Front Microbiol, 2016, 7: 487.
[49] [49] ZHONG S, ZHANG L, JIANG X, et al. Comparison of chemical composition and airborne bacterial community structure in PM2.5 during haze and nonhaze days in the winter in Guilin, China[J]. Sci Total Environ, 2019, 655: 202-210.
[50] [50] ROMANO S, BECAGLI S, LUCARELLI F, et al. Airborne bacteria structure and chemical composition relationships in winter and spring PM10 samples over southeastern Italy[J]. Sci Total Environ, 2020, 730: 138899.
[51] [51] ALGHAMDI M A, SHAMY M, REDAL M A, et al. Microorganisms associated particulate matter: a preliminary study[J]. Sci Total Environ, 2014, 479-480: 109-116.
[52] [52] YAN D, ZHANG T, BAI J L, et al. Isolation, characterization, and antimicrobial activity of bacterial and fungal representatives associated with particulate matter during haze and non-haze days[J]. Front Microbiol, 2022, 12: 793037.
[53] [53] LIU H, ZHANG X, ZHANG H, et al. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter[J]. Environ Pollut, 2018, 233: 483-493.
[54] [54] QIN N, LIANG P, WU C, et al. Longitudinal survey of microbiome associated with particulate matter in a megacity[J]. Genome Biol, 2020, 21(1): 55.
[55] [55] LI W, YANG J, ZHANG D, et al. Concentration and Community of Airborne Bacteria in Response to Cyclical Haze Events During the Fall and Midwinter in Beijing, China[J]. Front Microbiol, 2018, 9: 1741.
[56] [56] HOU K, WU Z X, CHEN X Y, et al. Microbiota in health and diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 135.
[57] [57] KIM T Y, KIM J M, LEE H L, et al. Codium fragile suppresses PM2.5-induced cognitive dysfunction by regulating gut-brain axis via TLR-4/MyD88 pathway[J]. Int J Mol Sci, 2023, 24(16): 12898.
[58] [58] ZHOU H, LI Q, ZHANG Z, et al. Recent advances in superhydrophobic and antibacterial cellulose-based fibers and fabrics: bio-inspiration, strategies, and applications[J]. Adv Fiber Mater, 2023, 5(5): 1555-1591.
[59] [59] SKEETERS S S, ROSU A C, DIVYANSHI, et al. Comparative Determination of Cytotoxicity of Sub-10 nm Copper Nanoparticles to Prokaryotic and Eukaryotic Systems[J]. ACS Appl Mater Interfaces, 2020, 12(45): 50203-50211.
[60] [60] MARGARYAN A, PANOSYAN H, BIRKELAND N K. Heavy metal resistance in prokaryotes: mechanism and application[M]//EGAMBERDIEVA D, BIRKE-LAND N K, LI W J, et al. Microbial Communities and their Interactions in the Extreme Environment. Singapore: Springer, 2021: 273-313.
[61] [61] ODENWALD M A, TURNER J R. The intestinal epithelial barrier: a therapeutic target?[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(1): 9-21.
[62] [62] MUTLU E A, ENGEN P A, SOBERANES S, et al. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice[J]. Part Fibre Toxicol, 2011, 8: 19.
[63] [63] PANDA S R, CHAUDHARI V B, AHMED S, et al. Ambient particulate matter (PM2.5) exposure contributes to neurodegeneration through the microbiome-gut-brain axis: therapeutic role of melatonin[J]. Environ Toxicol Pharmacol, 2023, 101: 104183.
[64] [64] NAM W, KIM H, BAE C, et al. Lactobacillus HY2782 and Bifidobacterium HY8002 Decrease Airway Hyperresponsiveness Induced by Chronic PM2.5 Inhalation in Mice[J]. Journal of Medicinal Food, 2020, 23(6): 575-83.
[65] [65] TANG Q, SHEN D, DAI P, et al. Pectin alleviates the pulmonary inflammatory response induced by PM2.5 from a pig house by modulating intestinal microbiota[J]. Ecotoxicol Environ Saf, 2023, 261: 115099.
[66] [66] GUPTA N, EL-GAWAAD N S A, ABDALLAH S A O, et al. Possible modulating functions of probioticLactiplantibacillus plantarumin particulate matter-associated pulmonary inflammation[J]. Front Cell Infect Microbiol, 2024, 13: 1290914.
[67] [67] WU Y, PEI C, WANG X, et al. Probiotics ameliorates pulmonary inflammation via modulating gut microbiota and rectifying Th17/Treg imbalance in a rat model of PM2.5 induced lung injury[J]. Ecotoxicol Environ Saf, 2022, 244: 114060.
[68] [68] MAYER E A. Gut feelings: the emerging biology of gut-brain communication[J]. Nat Rev Neurosci, 2011, 12(8): 453-466.
[69] [69] LI T, FANG J, TANG S, et al. PM2.5 exposure associated with microbiota gutbrain axis: multi-omics mechanistic implications from the BAPE study[J]. Innovation (Camb), 2022, 3(2): 100213.
[70] [70] ALBILLOS A, DE GOTTARDI A, RESCIGNO M. The gut-liver axis in liver disease: pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577.
[71] [71] KONTUREK P C, HARSCH I A, KONTUREK K, et al. Gut–Liver Axis: How Do Gut Bacteria Influence the Liver?[J]. Med Sci (Basel), 2018, 6(3): 79.
[72] [72] ALBILLOS A, LARIO M, LVAREZ-MON M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance[J]. J Hepatol, 2014, 61(6): 1385-1396.
[73] [73] BAO Q, YU L, CHEN D, et al. Variation in the gut microbial community is associated with the progression of liver regeneration[J]. Hepatol Res, 2020, 50(1): 121-136.
[74] [74] SALEM I, RAMSER A, ISHAM N, et al. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis[J]. Front Microbiol, 2018, 9: 1459.
[75] [75] O'NEILL C A, MONTELEONE G, MCLAUGHLIN J T, et al. The gut-skin axis in health and disease: a paradigm with therapeutic implications[J]. Bioessays, 2016, 38(11): 1167-1176.
[76] [76] GIORDANO L, MIHAILA S M, AMIRABADI H E, et al. Microphysiological systems to recapitulate the gut–kidney axis[J]. Trends Biotechnol, 2021, 39(8): 811-823.
[77] [77] D'AMELIO P, SASSI F. Gut microbiota, immune system, and bone[J]. Calcif Tissue Int, 2018, 102(4): 415-425.
[78] [78] DE PESSEMIER B, GRINE L, DEBAERE M, et al. Gut-skin axis: current knowledge of the interrelationship between microbial dysbiosis and skin conditions[J]. Microorganisms, 2021, 9(2): 353.
[79] [79] GLOSTER H M JR, GEBAUER L E, MISTUR R L. Cutaneous manifestations of gastrointestinal disease[M]//GLOSTER H M JR, GEBAUER L E, MISTUR R L. Absolute Dermatology Review: Mastering Clinical Conditions on the Dermatology Recertification Exam. Cham: Springer, 2016: 171-179.
[80] [80] THYE A Y K, BAH Y R, LAW J W F, et al. Gut-skin axis: unravelling the connection between the gut microbiome and psoriasis[J]. Biomedicines, 2022, 10(5): 1037.
[81] [81] STAVROPOULOU E, KANTARTZI K, TSIGALOU C, et al. Focus on the gut-kidney axis in health and disease[J]. Front Med (Lausanne), 2021, 7: 620102.
[82] [82] HOBBY G P, KARADUTA O, DUSIO G F, et al. Chronic kidney disease and the gut microbiome[J]. Am J Physiol Renal Physiol, 2019, 316(6): F1211-F1217.
[83] [83] JIA X, YANG R, LI J, et al. Gut-Bone Axis: A Non-Negligible Contributor to Periodontitis[J]. Front Cell Infect Microbiol, 2021, 11: 752708.
[84] [84] SJGREN K, ENGDAHL C, HENNING P, et al. The gut microbiota regulates bone mass in mice[J]. J Bone Miner Res, 2012, 27(6): 1357-1367.
Get Citation
Copy Citation Text
HONG Xiaoqing, SHAO Wenpu, XU Yanyi. Research advances on effects of ambient fine particulate matter on gut microbiota and potential mechanisms[J]. Journal of Environmental and Occupational Medicine, 2025, 42(7): 884
Category:
Received: Sep. 14, 2024
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: XU Yanyi (yanyi_xu@fudan.edu.cn)