NUCLEAR TECHNIQUES, Volume. 48, Issue 5, 050004(2025)
Research on real-time online image compression of HEPS-BPIX4 DAQ based on the object detection algorithm
Fig. 1. Performance comparison between YOLOv10 model and other models[18] (color online)
Fig. 2. Categories of training sample images(a) Ag, (b) Glass, (c) CeO₂, (d) Ag₂SiO₃, (e) TiO₂
Fig. 3. Annotated regions of interest (ROIs) in the training sample images(a) Ag, (b) Glass, (c) CeO2, (d) Ag2SiO3, (e) TiO2
Fig. 8. Test of cropping and compression effects (a) Ag, (b) Glass, (c) CeO₂, (d) Ag₂SiO₃, (e) TiO₂
Fig. 12. Testing of image results before and after compression on simulated data(a) Ag, (b) CeO2, (c) Glass, (d) Single-crystal, (e) TiO2, (f) Diamond
Fig. 14. Performance comparison of the compression module on different GPU platforms
Fig. 15. Design of multithreaded preprocessing and postprocessing deployment workflow
|
|
Get Citation
Copy Citation Text
Pengfei XIAO, Xiaolu JI, Xuanzheng YANG, Ping CAO. Research on real-time online image compression of HEPS-BPIX4 DAQ based on the object detection algorithm[J]. NUCLEAR TECHNIQUES, 2025, 48(5): 050004
Category: Special Topics on Applications of Machine Learning in Nuclear Physics and Nuclear Data
Received: Dec. 28, 2024
Accepted: --
Published Online: Jun. 26, 2025
The Author Email: Ping CAO (曹平)