Laser & Optoelectronics Progress, Volume. 56, Issue 13, 131102(2019)

Predicting Soil Available Phosphorus by Hyperspectral Regression Method Based on Gradient Boosting Decision Tree

Xiu Jin, Xianzhi Zhu, Shaowen Li*, Wencai Wang, and Haijun Qi
Author Affiliations
  • School of Information & Computer, Anhui Agricultural University, Hefei, Anhui 230036, China
  • show less
    Figures & Tables(9)
    Stacking method
    Indoor hyperspectral acquisition system
    Hyperspectral reflectance of soil. (a) Original spectra; (b) smoothing spectra
    fRMSE values of different LV numbers in linear and nonlinear PLS
    Parameter optimization of GBDT model. (a) Rloss=Fls, Rn_estimators=100; (b) Rloss=Fhuber, Rn_estimators=200; (c) Rloss=Fquantile, Rn_estimators=200; (d) Rloss=Flad, Rn_estimators=310
    Results of different model integration algorithms. (a) Results of random forest based on modeling set; (b) results of random forest based on testing set; (c) results of boosting tree based on modeling set; (d) results of boosting tree based on testing set; (e) results of GBDT based on modeling set; (f) results of GBDT based on testing set
    • Table 1. Statistical parameters of soil available phosphorus content

      View table

      Table 1. Statistical parameters of soil available phosphorus content

      TypeSampleMax /(mg·kg-1)Min /(mg·kg-1)Average /(mg·kg-1)Standard deviation /(mg·kg-1)
      Total19334.960.0310.569.36
      Training14434.960.0310.949.49
      Testing4932.240.609.018.99
    • Table 2. Testing results of optimal single model

      View table

      Table 2. Testing results of optimal single model

      Modeling methodTraining setTesting setPrediction level(testing set)Parameter
      fRPDR2fRPDR2
      PLS1.660.731.650.68BRLVs=11
      RBF-PLS1.580.711.790.73BRLVs=11, Rgamma =0.016
      Sigmoid-PLS1.550.701.750.73BRLVs =10, Rgamma=0.00085,Rcofe0cofe0=4.5
      SVR1.600.741.530.69BC=10000
      RBF-SVR1.700.761.660.72BC=2000000, Rgamma =0.0028
      Sigmoid-SVR1.590.731.550.70BC=1011, Rgamma =0.000001,Rcofe0=0
      Ridge1.600.741.500.69BRAlpha=0.001
      RBF-Ridge1.550.741.500.70BRAlpha=0.00006, Rgamma =0.01
      Sigmoid-Ridge1.520.721.500.69BRAlpha=4×10-7,Rgamma =0.0005, Rcofe0=0.9
    • Table 3. Results of multi-model combination

      View table

      Table 3. Results of multi-model combination

      Ensemble methodTraining setTesting setPrediction level(testing set)Parameter
      fRPDR2fRPDR2
      Random forest2.100.842.080.84ARn_estimators, Rmax_depth=5
      Boosting tree2.860.902.120.82ARn_estimators =300, Rlearning_rate=0.01,Rmax_depth=5, Rloss=Flinear
      GBDT2.560.882.550.86ARn_estimators =310, Rlearning_rate=0.29,Rmax_depth=4, Rloss=Flad
    Tools

    Get Citation

    Copy Citation Text

    Xiu Jin, Xianzhi Zhu, Shaowen Li, Wencai Wang, Haijun Qi. Predicting Soil Available Phosphorus by Hyperspectral Regression Method Based on Gradient Boosting Decision Tree[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131102

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jan. 4, 2019

    Accepted: Jan. 25, 2019

    Published Online: Jul. 11, 2019

    The Author Email: Li Shaowen (shwli@ahau.edu.cn)

    DOI:10.3788/LOP56.131102

    Topics