Advanced Photonics, Volume. 7, Issue 5, 054002(2025)
Deep learning for computational imaging: from data-driven to physics-enhanced approaches
[8] . Measuring the Quantum State of Light, 22(1997).
[23] . Introduction to Inverse Problems in Imaging(1998).
[37] Deep learning: a critical appraisal(2018).
[38] . Deep Learning(2016).
[47] . Digital Image Processing(2009).
[48] On the regularization of ill-posed problems. Dokl. Akad. Nauk SSSR, 153, 49-52(1963).
[52] . Optical Imaging and Spectroscopy(2009).
[59] An overview of gradient descent optimization algorithms(2017).
[64] et alAttention is all you need, 30(2017).
[71] Phase unwraping by neural network, 136-141(1993).
[75] ImageNet classification with deep convolutional neural networks, 1097-1105(2012).
[83] et alExploit imaging through opaque wall via deep learning(2017).
[123] Deep learning applications for hyperspectral imaging: a systematic review. Complex Intell. Syst., 9, 2713-2745(2021).
[133] et alGenerative adversarial nets, 2672-2680(2014).
[135] Adam: a method for stochastic optimization(2014).
[151] et alReference-less decomposition of highly multimode fibers using a physics-driven neural network(2024).
[153] et alDeep learning techniques for atmospheric turbulence removal: a review(2024).
[165] Deep learning for medical image processing: overview, challenges and future(2017).
[168] Blending diverse physical priors with neural networks(2019).
[171] . Introduction to Fourier Optics(2005).
[173] . Introduction to Optical Microscopy(2019).
[191] et alSuper-resolution image display using diffractive decoders. Sci. Adv., 8, eadd3433(2022).
[210] et alCompressed sensing using generative models, 537-546(2017).
[223] et alA novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. Lect. Notes Comput. Sci., 11767, 723-731(2019).
[230] Physical model simulator-trained neural network for computational 3D phase imaging of multiple-scattering samples(2021).
[236] et alLocal conditional neural fields for versatile and generalizable large-scale reconstructions in computational imaging(2023).
[256] et alQuantitative phase imaging (QPI) through random diffusers using a diffractive optical network. Light: Adv. Manuf., 4, 206(2023).
[283] et alRobust compressed sensing MRI with deep generative priors, 14938-14954(2021).
[284] Bayesian image reconstruction using deep generative models(2021).
[307] et alFouriernets enable the design of highly non-local optical encoders for computational imaging, 1-13(2024).
[312] Deep decoder: concise image representations from untrained non-convolutional networks(2018).
[315] et alNeuPh: scalable and generalizable neural phase retrieval with local conditional neural fields. Adv. Photonics Nexus, 3, 056005(2024).
[317] et alSora: a review on background, technology, limitations, and opportunities of large vision models(2024).
[319] et alUncertainty modeling in generative compressed sensing, 26655-26668(2022).
[320] Auto-encoding variational Bayes(2013).
[321] Denoising diffusion probabilistic models, 6840-6851(2020).
[323] Solving linear inverse problems using GAN priors: an algorithm with provable guarantees(2018).
[324] Robust compressive phase retrieval via deep generative priors(2018).
[325] Phase retrieval under a generative prior, 9154-9164(2018).
[342] et alOn the opportunities and risks of foundation models(2021).
[343] et alA survey of large language models(2023).
[344] Local conditional neural fields for versatile and generalizable large-scale reconstructions in computational imaging(2023).
Get Citation
Copy Citation Text
Fei Wang, Juergen W. Czarske, Guohai Situ, "Deep learning for computational imaging: from data-driven to physics-enhanced approaches," Adv. Photon. 7, 054002 (2025)
Category: Reviews
Received: Feb. 7, 2025
Accepted: Jul. 21, 2025
Posted: Jul. 21, 2025
Published Online: Sep. 4, 2025
The Author Email: Guohai Situ (ghsitu@siom.ac.cn)