Advanced Photonics, Volume. 7, Issue 5, 054002(2025)
Deep learning for computational imaging: from data-driven to physics-enhanced approaches
[8] U. Leonhardt. Measuring the Quantum State of Light, 22(1997).
[23] M. Bertero, P. Boccacci. Introduction to Inverse Problems in Imaging(1998).
[37] G. Marcus. Deep learning: a critical appraisal(2018).
[38] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).
[47] R. C. Gonzalez. Digital Image Processing(2009).
[48] A. N. Tikhonov. On the regularization of ill-posed problems. Dokl. Akad. Nauk SSSR, 153, 49-52(1963).
[52] D. J. Brady. Optical Imaging and Spectroscopy(2009).
[59] S. Ruder. An overview of gradient descent optimization algorithms(2017).
[64] I. Guyon, A. Vaswani et al. Attention is all you need, 30(2017).
[71] W. Jüptner, M. Takeda, K. Nagatome, W. Osten, Y. Watanabe. Phase unwraping by neural network, 136-141(1993).
[75] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks, 1097-1105(2012).
[83] M. Lyu et al. Exploit imaging through opaque wall via deep learning(2017).
[123] A. Ozdemir, K. Polat. Deep learning applications for hyperspectral imaging: a systematic review. Complex Intell. Syst., 9, 2713-2745(2021).
[133] I. J. Goodfellow et al. Generative adversarial nets, 2672-2680(2014).
[135] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2014).
[151] Q. Zhang et al. Reference-less decomposition of highly multimode fibers using a physics-driven neural network(2024).
[153] P. Hill et al. Deep learning techniques for atmospheric turbulence removal: a review(2024).
[165] M. I. Razzak, S. Naz, A. Zaib. Deep learning for medical image processing: overview, challenges and future(2017).
[168] Y. Ba, G. Zhao, A. Kadambi. Blending diverse physical priors with neural networks(2019).
[171] J. W. Goodman. Introduction to Fourier Optics(2005).
[173] J. Mertz. Introduction to Optical Microscopy(2019).
[191] Ç. Isl et al. Super-resolution image display using diffractive decoders. Sci. Adv., 8, eadd3433(2022).
[210] A. Bora et al. Compressed sensing using generative models, 537-546(2017).
[223] L. Shi et al. A novel loss function incorporating imaging acquisition physics for PET attenuation map generation using deep learning. Lect. Notes Comput. Sci., 11767, 723-731(2019).
[230] A. Matlock, L. Tian. Physical model simulator-trained neural network for computational 3D phase imaging of multiple-scattering samples(2021).
[236] H. Wang et al. Local conditional neural fields for versatile and generalizable large-scale reconstructions in computational imaging(2023).
[256] Y. Li et al. Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network. Light: Adv. Manuf., 4, 206(2023).
[283] A. Jalal, M. Ranzato et al. Robust compressed sensing MRI with deep generative priors, 14938-14954(2021).
[284] R. V. Marinescu, D. Moyer, P. Golland. Bayesian image reconstruction using deep generative models(2021).
[307] D. Deb et al. Fouriernets enable the design of highly non-local optical encoders for computational imaging, 1-13(2024).
[312] R. Heckel, P. Hand. Deep decoder: concise image representations from untrained non-convolutional networks(2018).
[315] H. Wang et al. NeuPh: scalable and generalizable neural phase retrieval with local conditional neural fields. Adv. Photonics Nexus, 3, 056005(2024).
[317] Y. Liu et al. Sora: a review on background, technology, limitations, and opportunities of large vision models(2024).
[319] Y. Zhang et al. Uncertainty modeling in generative compressed sensing, 26655-26668(2022).
[320] D. P. Kingma. Auto-encoding variational Bayes(2013).
[321] J. Ho, A. Jain, P. Abbeel. Denoising diffusion probabilistic models, 6840-6851(2020).
[323] V. Shah, C. Hegde. Solving linear inverse problems using GAN priors: an algorithm with provable guarantees(2018).
[324] F. Shamshad, A. Ahmed. Robust compressive phase retrieval via deep generative priors(2018).
[325] P. Hand, O. Leong, V. Voroninski. Phase retrieval under a generative prior, 9154-9164(2018).
[342] R. Bommasani et al. On the opportunities and risks of foundation models(2021).
[343] W. X. Zhao et al. A survey of large language models(2023).
[344] H. Wang, L. Tian. Local conditional neural fields for versatile and generalizable large-scale reconstructions in computational imaging(2023).
Get Citation
Copy Citation Text
Fei Wang, Juergen W. Czarske, Guohai Situ, "Deep learning for computational imaging: from data-driven to physics-enhanced approaches," Adv. Photon. 7, 054002 (2025)
Category: Reviews
Received: Feb. 7, 2025
Accepted: Jul. 21, 2025
Posted: Jul. 21, 2025
Published Online: Sep. 4, 2025
The Author Email: Guohai Situ (ghsitu@siom.ac.cn)