Optoelectronic Technology, Volume. 41, Issue 3, 167(2021)
Research Progress of Opto⁃molecular Devices Materials
[2] Widawsky J R, Kamenetska M, Klare J et al. Measurement of voltage-dependent electronic transport across amine-linked single-molecular-wire junctions[J]. Nanotechnology, 20, 18968-18972(2009).
[3] Komoto Y, Isshiki Y, Fujii S et al. Evaluation of the electronic structure of single-molecule junctions based on current-voltage and thermopower measurements: application to C 60 Single-molecule junction[J]. Chemistry An Asian Journal, 12, 440-445(2017).
[4] Hihath J, Chen F et al. Thermally activated electron transport in single redox molecules[J]. Journal of the American Chemical Society, 129, 11535-11542(2007).
[6] Xiao X, Xu B, Tao N. Conductance titration of single-peptide molecules[J]. Journal of the American Chemical Society, 126, 5370-1(2004).
[7] Yang G G, Sara Sangtarash, Liu Z T et al. Protonation tuning of quantum interference in azulene-type single-molecule junctions[J]. Chemical Science, 8, 7505(2017).
[8] Roldan D, Kaliginedi V, Cobo S et al. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions[J]. Journal of the American Chemical Society, 135, 5974-7(2013).
[9] Jan V D M S, Liao J, Kudernac T et al. Light-controlled conductance switching of ordered metal-molecule-metal devices[J]. Nano Letters, 9, 76-80(2009).
[10] Li Y, Buerkle M, Li G et al. Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport[J]. Nature Materials, 18, 1(2019).
[11] Edmund L, Bart L, Asma A et al. Bias-driven conductance increase with length in porphyrin tapes[J]. Journal of the American Chemical Society, 140, 12877-12883(2018).
[12] Li J J, Bai M L, Schwarzacher W et al. Giant single-molecule anisotropic magnetoresistance at room temperature[J]. Journal of the American Chemical Society, 137, 5923-9(2015).
[13] Aragones A C, Aravena D, Cerda J I et al. Large conductance switching in a single-molecule device through room temperature spin-dependent transport[J]. Nano Letters, 218(2015).
[14] Zhou Z, Chu S I. A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices[J]. Euro-physics Letters, 88, 17008(2009).
[15] [M]. Nano and molecular electronics handbook(2016).
[16] Elke S, Carlos C J[M]. Molecular electronics: An introduction to theory and experiment(2017).
[17] Feynman R P. There's plenty of room at the bottom[J]. California Institute of Technology Journal of Engineering and Science, 4, 23(1960).
[18] Aviram A, Ratner M A. Single-electron transfer in the tallic nanostructures[J]. Chem. Phys. Lett., 29, 277(1974).
[19] Balzani V, Credi A, Venturi M. Molecular devices and machines[J]. Nano Today, 17, 18-25(2007).
[20] Balzani V, Credi A, Venturi M[M]. Molecular devices and machines: Concepts and perspectives for the nanoworld(2008).
[21] Dyck C V, Ratner M A. Molecular rectifiers: A new design based on asymmetric anchoring moieties[J]. Nano Letters, 15, 1577-1584(2015).
[22] James T D, KRAS Sandanayake, Shinkai S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor[J]. Nature, 374, 345(1995).
[23] Nerngchamnong N, Yuan L, Qi D C et al. The role of van der waals forces in the performance of molecular diodes[J]. Nature Nanotechnology, 8, 113(2013).
[24] Zhang S. Fabrication of novel biomaterials through molecular self-assembly[J]. Nature Biotechnology, 21, 1171(2003).
[25] Qin L, Park S, Huang L et al. On-wire lithography[J]. Science, 309, 113-115(2005).
[26] Chen X, Yeganeh S, Qin L et al. Chemical fabrication of heterometallic nanogaps for molecular transport junctions[J]. Nano Letters, 9, 3974-3979(2009).
[27] Periasamy C, Prakash R, Chakrabarti P. Effect of post annealing on structural and optical properties of ZnO thin films deposited by vacuum coating technique[J]. Journal of Materials Science Materials in Electronics, 21, 309-315(2010).
[28] Reed M A. Conductance of a molecular junction[J]. Science, 278, 252-252(1997).
[29] Muller C J, van Ruitenbeek J M, de Jongh L J. Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width[J]. Phys. Rev. Lett., 69, 140-143(1992).
[30] Xiang D, Jeong H, Lee T et al. Mechanically controllable break junctions for molecular electronics[J]. Advanced Materials, 25, 4845-4867(2013).
[31] Kirgan R A, Sullivan B P, Rillema D P. Photochemistry and photophysics of coordination compounds: Rhenium[J]. Cheminform, 281, 45-100(2007).
[32] Xu B, Tao N. Measurement of single-molecule resistance by repeated formation of molecular junctions[J]. Science, 301, 1221-1223(2003).
[33] Tian J H, Yang Y, Zhou X S et al. Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods[J]. Chem. Phys. Chem., 11, 2745-2755(2010).
[34] Pla-Vilanova P, Aragonès A C, Ciampi S et al. The spontaneous formation of single-molecule junctions via terminal alkynes[J]. Nanotechnology, 26, 2006381001(2015).
[35] Xiao B H, Liang F, Liu S M et al. Cucurbituril mediated single molecule detection and identification via recognition tunneling[J]. Nanotechnology, 29, 365501(2018).
[37] Huang C, Rudnev A V, Hong W J et al. Break junction under electrochemical gating: Testbed for single-molecule electronics[J]. Chemical Society Reviews, 44, 889(2015).
[38] Konishi T, Kiguchi M, Mai T et al. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature[J]. Journal of the American Chemical Society, 135, 1009(2013).
[39] Latha V, Klare J E, Colin N et al. Dependence of single-molecule junction conductance on molecular conformation[J]. Nature, 442, 904-907(2006).
[40] Miguel D, Álvarez de Cienfuegos L, Martín-Lasanta A et al. Toward multiple conductance pathways with heterocycle-based oligo(phenyleneethynylene) derivatives[J]. Journal of the American Chemical Society, 137, 13818-13826(2015).
[41] Jun S I, Lee J W, Sakamoto S et al. Rotaxane-based molecular switch with fluorescence signaling[J]. Tetrahedron Letters, 41, 471-475(2000).
[43] Elisa, Bassotti, Paola, et al. Effect of strain on the photoisomerization and stability of a congested azobenzenophane: A combined experimental and computational study[J]. Journal of Physical Chemistry A, 110, 12385-12394(2006).
[45] Fischer E, Hirshberg Y. Formation of coloured form of spirans by low-temperature irradiation[J]. Journal of the Chemical Society, 11, 4522-4524(1952).
[46] Sanders P, Bignozzi C A. Molecular level optical information storage devices[P]. US.
[47] Zarembowitch J, Kahn O. Spin-transition molecular system towards information storage and signal processing[J]. New Journal of Chemistry, 15, 181-190(1991).
[48] Gaietta G. Molecular tags: A multi-color, multi-scale approach to recombinant protein analysis[J]. Microscopy & Microanalysis, 10, 248-249(2004).
[49] Moffat C K. Photo-excited structure of a plant photoreceptor domain reveals a light-driven molecular switch[J]. Plant Cell, 14, 1067-1075(2002).
[50] Chorazy S, Zakrzewski J J, Reczyński M et al. Humidity driven molecular switch based on photoluminescent DyIII CoIII single-molecule magnets[J]. Journal of Materials Chemistry C, 7, 4164-4172(2019).
[51] He J, Sankey O, Lee M et al. Measuring single molecule conductance with break junctions[J]. Faraday Discussions, 131, 145-154(2006).
[52] Jan V D M S, Liao J, Kudernac T et al. Light-controlled conductance switching of ordered metal-molecule-metal devices[J]. Nano Letters, 9, 76-80(2009).
[53] Deniz E, Impellizzeri S, Sortino S et al. A photoswitchable bichromophoric oxazine with fast switching speeds and excellent fatigue resistance[J]. Canadian Journal of Chemistry, 89, 110-116(2011).
[54] Vogelsang J, Cordes T, Forthmann C et al. Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy[J]. Proceedings of the National Academy of Sciences, 106, 8107-8112(2009).
[55] Broman S L, Lara-Avila S, Thisted C L et al. Dihydroazulene photoswitch operating in sequential tunneling regime: Synthesis and single-molecule junction studies[J]. Advanced Functional Materials, 22, 4249-4258(2012).
[56] Zhuang M, Ernzerhof M. Mechanism of a molecular electronic photoswitch[J]. Physical Review B Condensed Matter, 72, 073104(1-4(2005).
[57] Zhuang M, Ernzerhof M. Reversibility and transport properties of dithienylethene photoswitches[J]. Journal of Chemical Physics, 130, 541(2009).
[58] Jia C, Migliore A, Xin N et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity[J]. Science, 352, 1443-1445(2016).
[59] Huang C, Jevric M, Borges A et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique[J]. Nature Communications, 8, 15436(2017).
[60] Kim Y. Photoswitching molecular junctions: Platforms and electrical properties[J]. Chem. Phys. Chem., 21, 2368-2383(2020).
[61] Jenekhe S A, Osaheni J A. Excimers and exciplexes of conjugated polymers[J]. Science, 265, 765-768(1994).
[62] Zhao Z, He B, Tang B Z. ChemInform abstract: Aggregation‐induced emission of Siloles[J]. Chem. Inform, 6, 5347-5365(2015).
[63] Zhang X, Zhang X, Tao L et al. Aggregation induced emission-based fluorescent nanoparticles: Fabrication methodologies and biomedical applications[J]. Journal of Materials Chemistry B, 2, 4398-4414(2014).
[64] Zhao Z, He B, Nie H et al. Stereoselective synthesis of folded luminogens with arene-arene stacking interactions and aggregation-enhanced emission[J]. Chem. Commun., 50, 1131-1133(2014).
[66] He B, Nie H, Luo W et al. Synthesis, structure and optical properties of tetraphenylethene derivatives with through-space conjugation between benzene and various planar chromophores[J]. Organic Chemistry Frontiers, 3, 1091-1095(2016).
[67] Kaliginedi V, Moreno-Garcia P, Valkenier H et al. Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires[J]. Journal of the Chemical Society, 134, 5262-5275(2012).
[68] Sun D, Rosokha S V, Kochi J K. Through‐space (Cofacial) π‐delocalization among multiple aromatic centers: Toroidal conjugation in hexaphenylbenzene‐like radical cations[J]. Angewandte Chemie, 117(2010).
[69] Chebny V J, Shukla R, Rathore R. Toroidal hopping of a single hole through the circularly-arrayed naphthyl groups in hexanaphthylbenzene cation radical[J]. Journal of Physical Chemistry A, 110, 13003(2006).
[70] Beenakker C W J. Universality in the random-matrix theory of quantum transport[J]. Physical Review Letters, 70, 1155-1158(1993).
[71] Jiao F, Hill A H, Harrison A et al. Synthesis of ordered mesoporous NiO with crystalline walls and a bimodal pore size distribution[J]. Journal of the American Chemical Society, 130, 5262-5266(2008).
[72] Schneebeli S T, Kamenetska M, Cheng Z et al. Single-molecule conductance through multiple π-π-stacked benzene rings determined with direct electrode-to-benzene ring connections[J]. Journal of the American Chemical Society, 133, 2136-2139(2011).
[73] Chen W T, Luo Z G, Wang Y F et al. Synthesis, structure, photophysical and electrochemical properties of a novel metalloporphyrin with a condensed three-dimensional porous open framework[J]. Inorganica Chimica Acta, 414, 1-7(2014).
[74] Mihailetchi V D, Xie H, Boer B D et al. Charge transport and photocurrent generation in poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells[J]. Advanced Functional Materials, 16, 699-708(2006).
[75] Fu Y, Wang F, Zhang Y et al. Research progress of non-fullerene small-molecule acceptor materials for organic solar cells[J]. Acta Chimica Sinica Chinese Edition, 72, 158(2014).
[76] Dong J X, Zhang H L. Azulene-based organic functional molecules for optoelectronics[J]. Chinese Chemical Letters, 27, 1097-1104(2016).
[77] Matsubara K, Oda T, Nagashima H. Diruthenium Carbonyl complexes bound to Guaiazulene: Preparation and thermally reversible photoisomerization studies of phosphine and phosphite derivatives of (μ2, η3 : η5 -guaiazulene) Ru2(CO)5 and iron homologues[J]. Organometallics, 20, 881-892(2001).
[78] Cai Z, Zhang N, Awais M A et al. Frontispiz: Synthesis of alternating donor–acceptor ladder type molecules and investigation of their multiple charge transfer pathways[J]. Angewandte Chemie, 130, 6552-6558(2018).
[79] Xue C L, Shen Y M, Li X C et al. Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway[J]. Stem Cells & Development, 27, 456-465(2018).
[80] Cai S, Deng W, Huang F et al. Light‐driven reversible intermolecular proton transfer at single‐molecule junctions[J]. Angewandte Chemie, 58, 3829-3833(2019).
Get Citation
Copy Citation Text
Renhan LI, Bohuai XIAO, Chen CHEN, Zhe WANG, Haijian CHEN, Gongming QIAN. Research Progress of Opto⁃molecular Devices Materials[J]. Optoelectronic Technology, 2021, 41(3): 167
Category: Study Report
Received: Mar. 4, 2021
Accepted: --
Published Online: Oct. 26, 2021
The Author Email: QIAN Gongming (qiangongming@wust.edu.cn)