Journal of Inorganic Materials, Volume. 39, Issue 12, 1391(2024)
[1] WANG J L, SHENG S Z, HE Z et al. Self-powered flexible electrochromic smart window[J]. Nano Letters, 21, 9976(2021).
[2] MA D Y, EH A L S, CAO S et al. Wide-spectrum modulated electrochromic smart windows based on MnO2/PB films[J]. ACS Applied Materials and Interfaces, 14, 1443(2022).
[4] ZHOU K L, WANG H, ZHANG Q Q et al. Dynamic process of ions transport and cyclic stability of WO3electrochromic film[J]. Journal of Inorganic Materials, 36, 152(2021).
[6] TUTEL Y, DURUKAN M B, HACIOGLU S O et al. Cobalt-doped MoO3 thin films and dual-band electrochromic devices with excellent cyclic stability[J]. Applied Materials Today, 101924(2023).
[7] GAO G, TAO X J, HE Y et al. Electrochromic composites films composed of MoO3 doped by tungsten atoms with remarkable response speed and color rendering efficiency
[8] HE Y C, LI T Z, ZHONG X L et al. Lattice and electronic structure variations in critical lithium doped nickel oxide thin film for superior anode electrochromism[J]. Electrochimica Acta, 316, 143(2019).
[10] FANG X J, WANG C W, TIAN Q Y et al. Based on triphenylamine-imidazole skeleton electro-fluorochromic small organic molecules: synthesis and electrofluorochromic properties[J]. Materials Letters, 333, 133659(2023).
[11] QIU M J, ZHOU F W, SUN P et al. Unveiling the electrochromic mechanism of Prussian blue by electronic transition analysis[J]. Nano Energy, 105148(2020).
[12] MA Q, CHEN J X, ZHANG H et al. Dual-function self-powered electrochromic batteries with energy storage and display enabled by potential difference[J]. ACS Energy Letters, 8, 306(2022).
[13] RAO T K, ZHOU Y L, JIANG J et al. Low dimensional transition metal oxide towards advanced electrochromic devices[J]. Nano Energy, 107479(2022).
[14] GUO J J, WANG M, DONG G B et al. Mechanistic insights into the coloration, evolution, and degradation of NiO
[15] KANDPAL S, BANSAL L, GHANGHASS A et al. Bifunctional solid state electrochromic device using WO3/WS2 nanoflakes for charge storage and dual-band color modulation[J]. Journal of Materials Chemistry C, 11, 12590(2023).
[16] DONG D M, DJAOUED H, VIENNEAU G et al. Electrochromic and colorimetric properties of anodic NiO thin films: uncovering electrochromic mechanism of NiO[J]. Electrochimica Acta, 335, 35648(2020).
[17] YANG H, YU J H, SEO H J et al. Improved electrochromic properties of nanoporous NiO film by NiO flake with thickness controlled by aluminum[J]. Applied Surface Science, 461, 88(2018).
[18] TIAN M H, LIU X Q, DIAO X G et al. High performance PANI/MnO2 coral-like nanocomposite anode for flexible and robust electrochromic energy storage device[J]. Solar Energy Materials and Solar Cells, 112239(2023).
[19] WANG S M, JIN Y H, WANG T et al. Polyoxometalate-MnO2 film structure with bifunctional electrochromic and energy storage properties[J]. Journal of Materiomics, 9, 269(2023).
[21] KUMAR J, NEIBER R R, ABBAS Z et al. Hierarchical NiMn- LDH hollow spheres as a promising pseudocapacitive electrode for supercapacitor application[J]. Micromachines, 14, 482(2023).
[22] GUO X L, LIU X Y, HAO X D et al. Nickel-manganese layered double hydroxide nanosheets supported on nickel foam for high- performance supercapacitor electrode materials[J]. Electrochimica Acta, 194, 179(2016).
[23] TANG Y Q, SHEN H M, CHENG J Q et al. Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors[J]. Advanced Functional Materials, 30, 1908223(2020).
[24] BAIG M M, GUL I H, AHMAD R et al. One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting[J]. Journal of Materials Science, 56, 18636(2021).
[25] BAIG M M, MEHRAN M T, KHAN R et al. Direct chemical synthesis of interlaced NiMn-LDH nanosheets on LSTN perovskite decorated Ni foam for high-performance supercapacitors[J]. Surface and Coatings Technology, 421, 127455(2021).
[26] ZHANG B, YANG Y, CAI J L et al. Mg doping of NiMn-LDH with a three-dimensional porous morphology for an efficient supercapacitor[J]. Dalton Transactions, 52, 10557(2023).
[27] SUN J W, WAN X Y, YANG T et al. Preparation and electrochromic properties of Ti2Nb10O29films[J]. Journal of Inorganic Materials, 38, 1434(2023).
[28] MURUGAN E, GOVINDARAJU S, SANTHOSHKUMAR S. Hydrothermal synthesis, characterization and electrochemical behavior of NiMoO4 nanoflower and NiMoO4/rGO nanocomposite for high-performance supercapacitors[J]. Electrochimica Acta, 392, 138973(2021).
[29] NIU H B, HUANG J H, LI Q W et al. Directly hydrothermal growth and electrochromic properties of porous NiMoO4 nanosheet films[J]. Journal of Inorganic Materials, 38, 1427(2023).
[30] REN Y, ZHOU X G, ZHANG H et al. Preparation of a porous NiO array-patterned film and its enhanced electrochromic performance[J]. Journal of Materials Chemistry C, 6, 4952(2018).
[31] ZHAO L L, CHEN Z M, PENG Y Q et al. High-performance complementary electrochromic energy storage device based on tungsten trioxide and manganese dioxide films[J]. Sustainable Materials and Technologies, e00445(2022).
[32] ZHOU D, CHE B Y, LU X H. Rapid one-pot electrodeposition of polyaniline/manganese dioxide hybrids: a facile approach to stable high-performance anodic electrochromic materials[J]. Journal of Materials Chemistry C, 5, 1758(2017).
[33] CHAVAN H S, HOU B, JO Y et al. Optimal rule-of-thumb design of nickel-vanadium oxides as an electrochromic electrode with ultrahigh capacity and ultrafast color tunability[J]. ACS Applied Materials and Interfaces, 13, 57403(2021).
Get Citation
Copy Citation Text
Xingzhe FENG, Dongyun MA, Jinmin WANG.
Category:
Received: Mar. 21, 2024
Accepted: --
Published Online: Jan. 21, 2025
The Author Email: Dongyun MA (dyma@usst.edu.cn), Jinmin WANG (jmwang@usst.edu.cn)