The Journal of Light Scattering, Volume. 32, Issue 4, 295(2020)
Raman Spectroscopy Measurement for Aerosol Single Particle
[1] [1] Krieger U K, Braun C. Light-scattering intensity fluctuations in single aerosol particles during deliquescence[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 70(4-6): 545-554.
[2] [2] Shiraiwa M, Ammann M, Koop T, et al. Gas uptake and chemical aging of semisolid organic aerosol particles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 1008(27): 11003-11008.
[3] [3] Wang Y, Jing B, Guo Y, et al. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts[J]. Journal of Environmental Sciences-China, 2016, 45: 156-163.
[4] [4] Jing B, Tong S, Liu Q, et al. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate[J]. Atmospheric Chemistry and Physics, 2016, 16(6): 4101-4118.
[5] [5] Wang X W, Jing B, Tan F, et al. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12797-12812.
[6] [6] Onasch T B, Siefert R L, Brooks S D, et al. Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature[J]. Journal of Geophysical Research, 1999, 104(D17): 21317-21326.
[7] [7] Brooks S D, Wise M E, Cushing M, et al. Deliquescence behavior of organic/ammonium sulfate aerosol[J]. Geophysical Research Letters, 2002, 29(19): 1-4.
[8] [8] Li X H, Zhao L J, Dong J L, et al. Confocal Raman studies of Mg(NO3)2 aerosol particles deposited on a quartz substrate: supersaturated structures and complicated phase transitions[J]. Journal of Physical Chemistry B, 2008, 112(16): 5032-5038.
[9] [9] Laskina O, Morris H S, Grandquist J R, et al. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles[J]. Journal of Physical Chemistry A, 2015, 119(19): 4489-4497.
[10] [10] You Y, Smith M L, Song M, et al. Liquid-liquid phase separation in atmospherically relevant particles consisting of organic species and inorganic salts[J]. International Reviews in Physical Chemistry, 2014, 33(1): 43-77.
[11] [11] Song M, Marcolli C, Krieger U K, et al. Morphologies of mixed organic/inorganic/aqueous aerosol droplets[J]. Faraday Discussions, 2013, 165: 289-316.
[12] [12] Hodas N, Zuend A, Mui W, et al. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols[J]. Atmospheric Chemistry and Physics, 2015, 15(9): 5027-5045.
[13] [13] Wu F M, Wang X W, Jing B, et al. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles[J]. Atmospheric Environment, 2018, 178(1): 286-292.
[14] [14] Zhou Q, Pang S F, Wang Y, et al. Confocal Raman studies of the evolution of the physical state of mixed phthalic acid/ammonium sulfate aerosol droplets and the effect of substrates[J]. Journal of Physical Chemistry B, 2014, 118(23): 6198-6205.
[15] [15] Surratt J D, Chan A W, Eddingsaas N C, et al. Reactive intermediates revealed in secondary organic aerosol formation from isoprene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6640-6645.
[16] [16] Riva M, Budisulistiorini S H, Zhang Z, et al. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol[J]. Atmospheric Environment, 2016, 130(1): 5-13.
[17] [17] Rindelaub J D, Mcavey K M, Shepson P B. The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis[J]. Atmospheric Environment, 2015, 100(1): 193-201.
[18] [18] Hu K S, Darer A I, Elrod M J. Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates[J]. Atmospheric Chemistry and Physics, 2011, 11(16): 8307-8320.
[19] [19] Prenni A J, Demott P J, Kreidenweis S M. Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids[J]. Atmospheric Environment, 2003, 37(30): 4243-4251.
[20] [20] Losey D J, Ott E J, Freedman M A. Effects of high acidity on phase transitions of an organic aerosol[J]. Journal of Physical Chemistry A, 2018, 122(15): 3819-3828.
[21] [21] Jang M, Czoschke N M, Lee S, et al. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions[J]. Science, 2002, 298(5594): 814-817.
[22] [22] Guo H, Liu J, Froyd K D, et al. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign[J]. Atmospheric Chemistry and Physics, 2017, 17(9): 5703-5719.
[23] [23] Hennigan C J, Izumi J, Sullivan A P, et al. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles[J]. Atmospheric Chemistry and Physics, 2015, 15(5): 2775-2790.
[24] [24] Rindelaub J D, Craig R L, Nandy L, et al. Direct measurement of pH in individual particles via Raman microspectroscopy and variation in acidity with relative humidity[J]. Journal of Physical Chemistry A, 2016, 120(6): 911-917.
[25] [25] Craig R L, Nandy L, Axson J L, et al. Spectroscopic determination of aerosol pH from acid-base equilibria in inorganic, organic, and mixed systems[J]. Journal of Physical Chemistry A, 2017, 121(30): 5690-5699.
[26] [26] Wei H, Vejerano E P, Leng W, et al. Aerosol microdroplets exhibit a stable pH gradient[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7272-7277.
[27] [27] Chang P P, Chen Z, Zhang Y H, et al. Direct measurement of aerosol pH in individual malonic acid and citric acid droplets under different relative humidity conditions via Raman spectroscopy[J]. Chemosphere, 2020, 241: 124960.
[28] [28] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: from air pollution to climate change[M]. USA: John Wiley & Sons, 2006.
[29] [29] Zhu T, Shang J, Zhao D. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze[J]. Science China-Chemistry, 2011, 54(1): 145-153.
[30] [30] Zhao D, Song X, Zhu T, et al. Multiphase oxidation of SO2 by NO2 on CaCO3 particles[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2481-2493.
[31] [31] Yu T, Zhao D, Song X, et al. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles[J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6679-6689.
[32] [32] Melzer J E, Mcleod E. Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds[J]. ACS Nano, 2018, 12(3): 2440-2447.
[33] [33] Wills J B, Knox K J, Reid J P. Optical control and characterisation of aerosol[J]. Chemical Physics Letters, 2009, 481(4-6): 153-165.
[34] [34] Marshall F H, Miles R E H, Song Y-C, et al. Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity[J]. Chemical Science, 2016, 7(2): 1298-1308.
[35] [35] Lv X J, Chen Z, Ma J B, et al. Evaporation of mixed citric acid/(NH4)2SO4H2O particles: Volatility of organic aerosol by using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117552.
[36] [36] Lv X J, Chen Z, Ma J B, et al. Volatility measurements of 1, 2, 6-hexanetriol in levitated viscous aerosol particles[J]. Journal of Aerosol Science, 2019, 138: 105449.
[37] [37] Ingram S, Cai C, Song Y C, et al. Characterising the evaporation kinetics of water and semi-volatile organic compounds from viscous multicomponent organic aerosol particles[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 31634-31646.
[38] [38] Cai C, Tan S, Chen H, et al. Slow water transport in MgSO4 aerosol droplets at gel-forming relative humidities[J]. Physical Chemistry Chemical Physics, 2015, 17(44): 29753-29763.
[39] [39] Chang P P, Gao X Y, Cai C, et al. Effect of waiting time on the water transport kinetics of magnesium sulfate aerosol at gel-forming relative humidity using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019: 117727.
[40] [40] Stewart D J, Cai C, Nayler J, et al. Liquid-liquid phase separation in mixed organic/inorganic single aqueous aerosol droplets[J]. Journal of Physical Chemistry A, 2015, 119(18): 4177-4190.
[41] [41] Halvorson R A, Vikesland P J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses[J]. Environmental Science & Technology, 2010, 44(20): 7749-7755.
[42] [42] Craig R L, Bondy A L, Ault A P. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level[J]. Analytical Chemistry, 2015, 87(15): 7510-7514.
[43] [43] Fu Y, Kuppe C, Valev V K, et al. Surface-enhanced Raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol[J]. Environmental Science & Technology, 2017, 51(11): 6260-6267.
[44] [44] Sun Z, Duan F, He K, et al. Sulfate-nitrate-ammonium as double salts in PM2.5: Direct observations and implications for haze events[J]. Science of the Total Environment, 2019, 647: 204-209.
[45] [45] Dong X, Ohnoutek L, Yang Y, et al. Cu/Ag sphere segment void array as efficient surface enhanced Raman spectroscopy substrate for detecting individual atmospheric aerosol[J]. Analytical Chemistry, 2019, 91(21): 13647-13657.
[46] [46] Sun Z, Duan F, He K, et al. Physicochemical analysis of individual atmospheric fine particles based on effective surface-enhanced Raman spectroscopy[J]. Journal of Environmental Sciences-China, 2019, 75: 388-395.
Get Citation
Copy Citation Text
CHANG Pianpian, ZHANG Yunhong. Raman Spectroscopy Measurement for Aerosol Single Particle[J]. The Journal of Light Scattering, 2020, 32(4): 295
Category:
Received: Jun. 15, 2020
Accepted: --
Published Online: Apr. 12, 2021
The Author Email: Pianpian CHANG (sxxzcpp@163.com)