Journal of Synthetic Crystals, Volume. 52, Issue 4, 671(2023)

Research Progress of Rare Earth Halide Scintillation Crystals for Neutron/Gamma Dual Detection

WANG Xiaoli1、*, YANG Lei1,2, and HOU Yueyun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(50)

    [1] [1] BOATNER L A, COMER E P, WRIGHT G W, et al. Improved Lithium Iodide neutron scintillator with Eu2+ activation Ⅱ: activator zoning and concentration effects in Bridgman-grown crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 903: 8-17.

    [2] [2] TANG M J, YU Q, HUANG C, et al. Study of a position-sensitive scintillator neutron detector prototype based on 6LiF/ZnS scintillator and silicon photomultiplier arrays readout[J]. The Review of Scientific Instruments, 2022, 93(3): 033305.

    [3] [3] OSHIMA Y, YASUMUNE T, MASUDA T, et al. Temperature dependence of Li-glass scintillator response to neutrons[J]. Progress in Nuclear Science and Technology, 2011, 1: 296-299.

    [5] [5] CIES'LAK M, GAMAGE K, GLOVER R. Critical review of scintillating crystals for neutron detection[J]. Crystals, 2019, 9(9): 480.

    [6] [6] YANAGIDA T. Study of rare-earth-doped scintillators[J]. Optical Materials, 2013, 35(11): 1987-1992.

    [7] [7] VAN EIJK C W E. Inorganic scintillators for thermal neutron detection[J]. Radiation Measurements, 2004, 38(4/5/6): 337-342.

    [8] [8] NAGARKAR V V, OVECHKINA E, BHANDARI H, et al. Lithium alkali halides-New thermal neutron detectors with n-γ discrimination[C]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). October 27-November 2, 2013, Seoul, Korea (South). IEEE, 2014: 1-4.

    [9] [9] COMBES C M, DORENBOS P, VAN EIJK C W E, et al. Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals[J]. Journal of Luminescence, 1999, 82(4): 299-305.

    [10] [10] VAN LOEF E V D, GLODO J, HIGGINS W M, et al. Optical and scintillation properties of Cs2/LiYCl6:Ce3 and Cs2LiYCl6:Pr3 crystals[J]. IEEE Transactions on Nuclear Science, 2005, 52(5): 1819-1822.

    [11] [11] GLODO J, VAN LOEF E, HAWRAMI R, et al. Selected properties of Cs2LiYCl6, Cs2LiLaCl6, and Cs2LiLaBr6 scintillators[J]. IEEE Transactions on Nuclear Science, 2011, 58(1): 333-338.

    [12] [12] SHIRWADKAR U, GLODO J, VAN LOEF E V, et al. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 268-270.

    [13] [13] YANG K, MENGE P R, LEJAY J, et al. Improving the neutron and gamma-ray response of Cs2LiLaBr6:Ce3+[C]//2013 IEEE Nuclear Science Symposium and Medical Imaging Conference, 2013, Seoul, Korea.

    [14] [14] GLODO J, HAWRAMI R, VAN LOEF E, et al. Dual gamma neutron detection with Cs2LiLaCl6[C]//SPIE Optical Engineering + Applications. Proc SPIE 7449, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics Ⅺ, San Diego, California, USA. 2009, 7449: 93-99.

    [15] [15] SHIRWADKAR U, GLODO J, VAN LOEF E, et al. Investigating scintillation properties of Ce doped Cs2LiYBr6[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference. October 30-November 6, 2010, Knoxville, TN, USA. IEEE, 2011: 1585-1588.

    [16] [16] SHIRWADKAR U, HAWRAMI R, GLODO J, et al. Novel scintillation material Cs2LiLaBr6-xClx:Ce for gamma-ray and neutron spectroscopy[C]//2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). October 27-November 3, 2012, Anaheim, CA, USA. IEEE, 2013: 1963-1967.

    [17] [17] PAN S K, ZHANG P, ZHU H B, et al. Crystal growth, luminescence and scintillation properties of mixed Ce:Cs2LiLaxY1-xCl6 (0<x≤0.4) scintillators[J]. Journal of Luminescence, 2018, 201: 211-216.

    [18] [18] VAN LOEF E D, DORENBOS P, VAN EIJK C E, et al. Scintillation and spectroscopy of the pure and Ce3-doped elpasolites: Cs2LiYX6(X=Cl, Br)[J]. Journal of Physics: Condensed Matter, 2002, 14(36): 8481-8496.

    [19] [19] BESSIERE A, DORENBOS P, VAN EIJK C W E, et al. New thermal neutron scintillators: Cs2LiYCl6:Ce and Cs2LiYBr6:Ce[J]. IEEE Transactions on Nuclear Science, 2004, 51(5): 2970-2972.

    [20] [20] BESSIERE A, DORENBOS P, VAN EIJK C W E, et al. Luminescence and scintillation properties of CS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 242-246.

    [21] [21] VAN LOEF E V, HIGGINS W M, SQUILLANTE M R, et al. Thermoluminescence of Cs2LiYCl6, Cs2LiYCl6:Ce3+ and Cs2LiYCl6:Pr3+ crystals[C]//2006 IEEE Nuclear Science Symposium Conference Record. October 29-November 1, 2006, San Diego, CA, USA. IEEE, 2007: 1183-1186.

    [22] [22] GLODO J, HIGGINS W M, VAN LOEF E V D, et al. Scintillation properties of 1 inch Cs2LiYCl6:Ce crystals[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1206-1209.

    [23] [23] GLODO J, HIGGINS W M, VAN LOEF E V D, et al. Cs2LiYCl6:Ce scintillator for nuclear monitoring applications[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 1257-1261.

    [24] [24] GLODO J, HAWRAMI R, VAN LOEF E, et al. Pulse shape discrimination with selected elpasolite crystals[J]. IEEE Transactions on Nuclear Science, 2012, 59(5): 2328-2333.

    [25] [25] GIAZ A, PELLEGRI L, CAMERA F, et al. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 810: 132-139.

    [26] [26] MENGE P R, RICHAUD D. Behavior of Cs2LiYCl6:Ce scintillator up to 175 ℃[C]//2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Valencia, Spain, 2011: 1598-1601.

    [27] [27] YANG K, MENGE P R. Pulse shape discrimination of Cs2LiYCl6:Ce3+ scintillator from -30 ℃ to 180 ℃[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 74-79.

    [28] [28] RODNYI P A, MIKHAILIK V B, STRYGANYUK G B, et al. Luminescence properties of Ce-doped Cs2LiLaCl6 crystals[J]. Journal of Luminescence, 2000, 86(2): 161-166.

    [29] [29] ZHU H B, ZHANG P, PAN S K, et al. Growth and characterization of Cs2LiLaCl6:Ce single crystals[J]. Journal of Crystal Growth, 2019, 507: 332-337.

    [30] [30] GUSS P P, STAMPAHAR T G, MUKHOPADHYAY S, et al. Scintillation properties of a Cs2LiLa(Br6)90%(Cl6)10%:Ce3+ (CLLBC) crystal[C]//SPIE Optical Engineering+Applications. Proc SPIE 9215, Radiation Detectors: Systems and Applications XV, San Diego, California, USA. 2014, 9215: 27-41.

    [31] [31] TONG Y F, TANG G, WEI Q H, et al. Effects of Cl- substitution on the scintillation properties of Cs2LiLaBr6-xClx:Ce crystals[J]. Journal of Luminescence, 2022, 247: 118896.

    [32] [32] TONG Y F, WEI Q H, LI W, et al. Effects of Ce3+ substitution on the local structure of cerium and scintillation properties of CLLBC:Ce crystals[J]. Journal of Crystal Growth, 2022, 600: 126940.

    [33] [33] KIM H J, ROOH G, PARK H, et al. Tl2LiYCl6(Ce3+): new Tl-based elpasolite scintillation material[J]. IEEE Transactions on Nuclear Science, 2016, 63(2): 439-442.

    [34] [34] HAWRAMI R, ARIESANTI E, SOUNDARA-PANDIAN L, et al. Tl2LiYCl6:Ce: a new elpasolite scintillator[J]. IEEE Transactions on Nuclear Science, 2016, 63(6): 2838-2841.

    [35] [35] HAWRAMI R, ARIESANTI E, WEI H, et al. Tl2LiYCl6: large diameter, high performing dual mode scintillator[J]. Crystal Growth & Design, 2017, 17(7): 3960-3964.

    [36] [36] MORETTI F, ONKEN D, PERRODIN D, et al. Investigation of the competition between Tl+ and Ce3+ scintillation in Tl2LiYCl6:Ce, an elpasolite scintillator[J]. Journal of Luminescence, 2022, 241: 118549.

    [37] [37] KNITEL M J, DORENBOS P, DE HAAS J T M, et al. LiBaF3, a thermal neutron scintillator with optimal n-γ discrimination[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 374(2): 197-201.

    [38] [38] COMBES C M, DORENBOS P, VAN EIJK C W E, et al. Optical and scintillation properties of LiBaF3:Ce crystals[J]. Journal of Luminescence, 1997, 72/73/74: 753-755.

    [39] [39] REEDER P L, BOWYER S M. Neutron/gamma discrimination in LiBaF3 scintillator[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248(3): 707-711.

    [40] [40] REEDER P L, BOWYER S M. Calibration of LiBaF3:Ce scintillator for fission spectrum neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 484(1/2/3): 469-485.

    [41] [41] HUA R N, LEI B F, XIE D M, et al. Synthesis of the complex fluoride LiBaF3 and optical spectroscopy properties of LiBaF3:M(M=Eu, Ce) through a solvothermal process[J]. Journal of Solid State Chemistry, 2003, 175(2): 284-288.

    [42] [42] GEKTIN A, SHIRAN N, NEICHEVA S, et al. LiCaAlF6:Ce crystal: a new scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1/2): 274-277.

    [43] [43] YAMAZAKI A, WATANABE K, URITANI A, et al. Neutron-gamma discrimination based on pulse shape discrimination in a Ce:LiCaAlF6 scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 435-438.

    [44] [44] WATANABE K, KONDO Y, YAMAZAKI A, et al. Temperature dependence of neutron-gamma discrimination based on pulse shape discrimination technique in a Ce:LiCaAlF6 scintillator[J]. IEEE Transactions on Nuclear Science, 2013, 60(2): 959-962.

    [45] [45] WATANABE K, YANAGIDA T, FUKUDA K, et al. Portable neutron detector using Ce:LiCaAlF6 scintillator[J]. Sens Mater, 2015, 27: 269-275.

    [46] [46] YANAGIDA T, YOSHIKAWA A, YOKOTA Y, et al. Crystal growth, optical properties, and α-ray responses of Ce-doped LiCaAlF6 for different Ce concentration[J]. Optical Materials, 2009, 32(2): 311-314.

    [47] [47] YANG M, LOYD M, SHI J, et al. LiCaAlF6:Eu and LiCaAlF6:Ce single crystals grown by the vertical bridgman method in a nonvacuum atmosphere and their optical and scintillation properties[J]. Crystal Growth & Design, 2021, 21(2): 847-853.

    [48] [48] KAWAGUCHI N, OKADA G, FUKUDA K, et al. Temperature dependence of scintillation responses in rare-earth-ions-doped LiCaAlF6 single crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161518.

    [49] [49] SHIMAMURA K, BALDOCHI S L, RANIERI I M, et al. Crystal growth of Ce-doped and undoped LiCaAlF6 by the Czochralski technique under CF4 atmosphere[J]. Journal of Crystal Growth, 2001, 223(3): 383-388.

    [50] [50] SHAH K S, GLODO J, VAN LOEF E V, et al. Scintillator materials comprising lithium, an alkaline earth metal, and a halide: US20200224093[P]. 2020-07-16.

    [51] [51] SOUNDARA-PANDIAN L, HAWRAMI R, GLODO J, et al. Lithium alkaline halides-next generation of dual mode scintillators[J]. IEEE Transactions on Nuclear Science, 2016, 63(2): 490-496.

    Tools

    Get Citation

    Copy Citation Text

    WANG Xiaoli, YANG Lei, HOU Yueyun. Research Progress of Rare Earth Halide Scintillation Crystals for Neutron/Gamma Dual Detection[J]. Journal of Synthetic Crystals, 2023, 52(4): 671

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 25, 2022

    Accepted: --

    Published Online: Jun. 11, 2023

    The Author Email: Xiaoli WANG (wangxiaoli@bgri.com)

    DOI:

    CSTR:32186.14.

    Topics