Chinese Journal of Liquid Crystals and Displays, Volume. 38, Issue 6, 691(2023)

Overview of two-dimensional high-throughput optical microscopy

Yu-ting GAO1,2,3, An PAN1,2、*, Bao-li YAO1,2, and Cai-wen MA1,2,3、**
Author Affiliations
  • 1Xi′an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi'an 710119,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3CAS Key Laboratory of Space Precision Measurement Technology,Xi'an 710119,China
  • show less
    Figures & Tables(11)
    Comparison of images acquired by microscope systems using 4× and 20× objectives.(a)Grayscale image of a USAF acquired with a 4× objective,(a1)is an enlarged view of the corresponding position in(a);(b)Grayscale image of a USAF acquired with a 20× objective.
    Example of two types of freeform designs.(a)High-resolution wide-FOV photolithographic objective lens[2];(b)Design solutions and experiment result of hemispherical electronic eye camera[5];(c)SST array and it’s process[6].
    Scanning method[10] and intrinsic drawbacks[80] of conventional digital pathologic scanners
    SAR and FPM.(a)Working principle and real image of SAR;(b)Space-time bandwidth product extended by FPM;(c)System construction and imaging experiment of FPM;(d)Flow chart of FPM reconstruction[13].
    Roadmap on FPM
    Principle and experimental results of CFFPM.(a)Match color and color transfer[34];(b)Imaging system of CFPM and FPM[34];(c)Color space of CFPM and CFFPM[34];(d)Schematic diagram of CFFPM method and it’s imaging results[59].
    SIM and SSIM.(a1~a4)Concept of resolution enhancement by SIM[60];(b1~b3)Resolution extension through the Moire˙ effect[61];(c1~c5)Resolution extension by nonlinear structured illumination[61];(d)SIM imaging of organism cells[63];(e)SSIM imaging of organism cells[63].
    High SBP is achieved by establishing a microfluidic channel.(a)Structure,working principle and imaging results of on-chip OFM,(a1)OFM scheme design section display,(a2)The physical picture of OFM on the chip,The microfluidic motion of a Giardia cyst when(a3)driven by pressure and(a4)driven by DC electrokinetics[64];(b)Lensless ultra-wide-field cell monitoring array platform based on shadow imaging[65];(c)Time-lapse imaging of HeLa cell culture on the ePetri platform[66].
    Lensless super-resolution imaging with phase recovery.(a)System composition and imaging experiment of high-resolution on-chip lensless imaging by laterally moving light source[67];(b)Schematic diagram of the multi-height pixel super-resolution based lensfree on-chip imaging set-up and phase image of a Pap test[68];(c)Structure of lensless on-chip microscopy using a fiber-optic array and imaging of red blood cells infected with malaria parasites[69];(d)Structure of LISA and imaging of breast cancer tissue[70];(e)Optical setup of wavelength-scanning pixel-super resolution and Lens-free imaging of a Papanicolaou(Pap)smear[71].
    Imaging principle and experimental results of SAP.(a)Comparison between conventional ptychography and SAP;(b)Experimental validation of the transmission configuration of SAP[90].
    • Table 1. Comparison of five technologies

      View table
      View in Article

      Table 1. Comparison of five technologies

      技术名称优势不足应用场景
      大孔径物镜制造与曲面探测技术单次曝光成像

      体积巨大

      体扫难以实现

      存在离轴像差、色差

      制造难度大、成本高

      空间大且仪器固定

      (如:光刻机)

      扫描拼接技术

      操作简单

      空域重构

      成本较低

      成像质量无保障

      景深局限

      效率低

      制式设计、维护困难

      病理学

      远程诊断

      免疫化学

      傅里叶叠层显微成像技术

      高通量

      长景深

      长工作距离

      成本低

      效率有待突破

      依赖频域重构算法抗噪声能力弱

      依赖GPU等算力和高性能探测器

      无标记活体细胞相位成像

      药物筛选

      病理学

      药物筛选

      工业无损探测

      宽场结构光照明技术结合荧光可实现超分辨成像

      分辨率提升受光强影响

      线性区域仅能实现两倍分辨率提升

      荧光样本成像
      无透镜片上显微成像技术

      体积小

      视场大

      成本低

      全视场成像速度受限

      可见光下分辨率提升有限

      非可见光波段
    Tools

    Get Citation

    Copy Citation Text

    Yu-ting GAO, An PAN, Bao-li YAO, Cai-wen MA. Overview of two-dimensional high-throughput optical microscopy[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(6): 691

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 31, 2023

    Accepted: --

    Published Online: Jun. 29, 2023

    The Author Email: An PAN (panan@opt.cn), Cai-wen MA (cwma@opt.ac.cn)

    DOI:10.37188/CJLCD.2023-0024

    Topics