Optics and Precision Engineering, Volume. 32, Issue 14, 2211(2024)

Effect of tool wear and variable friction coefficient on cutting force

Jicai KUAI1,2、*, Yunqian DUAN1,2, Xin LI1, Shian LIU1, and Dmitrii Valerievich ARDASHEV3
Author Affiliations
  • 1Henan Polytechnic University, School of Mechanical and Power Engineering, Jiaozuo454003, China
  • 2Henan International Joint Laboratory of Advanced Electronic Packaging Materials Precision Forming, Jiaozuo454003, China
  • 3South Ural State University, Department of Automation Engineering, Chelyabinsk454080, Russia
  • show less
    References(46)

    [1] [1] 王之岳, 陈灶灶, 朱利民, 等. 微透镜阵列单点金刚石车削补偿技术[J]. 光学 精密工程, 2022, 30(7): 813-820. doi: 10.37188/OPE.20223007.0813WANGZ Y, CHENZ Z, ZHUL M, et al. Single point diamond turning and compensation for micro-lens array[J]. Opt. Precision Eng., 2022, 30(7): 813-820.(in Chinese). doi: 10.37188/OPE.20223007.0813

    [2] [2] 余俊, 王占山, 黄秋实, 等. 极紫外及X射线波段超光滑反射镜的超精密加工与检测[J]. 光学 精密工程, 2022, 30(21): 2688-2697. doi: 10.37188/ope.20223021.2688YUJ, WANGZ S, HUANGQ S, et al. Ultra-precision machining and testing of reflector mirrors for extreme ultraviolet and X-ray[J]. Optics and Precision Engineering, 2022, 30(21): 2688-2697.(in Chinese). doi: 10.37188/ope.20223021.2688

    [3] MERCHANT M E. Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip[J]. Journal of Applied Physics, 16, 267-275(1945).

    [4] ABEBE M, APPl F C. A slip-line solution for negative rake angle cutting[J]. Manufacturing Engineering Transactions, 9, 341-348(1981).

    [5] SHI T, RAMALINGAM S. Slip-line solution for orthogonal cutting with a chip breaker and flank wear[J]. International Journal of Mechanical Sciences, 33, 689-704(1991).

    [6] KUDO H. Some new slip-line solutions for two-dimensional steady-state machining[J]. International Journal of Mechanical Sciences, 7, 43-55(1965).

    [7] JIN X L, ALTINTAS Y. Slip-line field model of micro-cutting process with round tool edge effect[J]. Journal of Materials Processing Technology, 211, 339-355(2011).

    [8] REBAIOLI L, BIELLA G, ANNONI M et al. Applicability of an orthogonal cutting slip-line field model for the microscale[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229, 2250-2264(2015).

    [9] WALDORF D J, DEVOR R E, KAPOOR S G. A slip-line field for ploughing during orthogonal cutting[J]. Journal of Manufacturing Science and Engineering, 120, 693-699(1998).

    [10] ARRAZOLA P J, UGARTE D, DOMÍNGUEZ X. A new approach for the friction identification during machining through the use of finite element modeling[J]. International Journal of Machine Tools and Manufacture, 48, 173-183(2008).

    [11] MANE S, JOSHI S S, KARAGADDE S et al. Modeling of variable friction and heat partition ratio at the chip-tool interface during orthogonal cutting of Ti-6Al-4V[J]. Journal of Manufacturing Processes, 55, 254-267(2020).

    [12] ÖZEL T. The influence of friction models on finite element simulations of machining[J]. International Journal of Machine Tools and Manufacture, 46, 518-530(2006).

    [13] [13] 李晓晨, 岳彩旭, 刘献礼, 等. 考虑刀-屑变摩擦因数的铣削力预测[J]. 振动.测试与诊断, 2022, 42(3): 580-587, 622, 623.LIX C, YUEC X, LIUX L, et al. Prediction modeling of milling force based on variable friction coefficient between tool and chip[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(3): 580-587, 622, 623.(in Chinese)

    [14] [14] 张程焱, 张发平, 杨瑞生, 等. 基于局部摩擦因数模型的切削力预测建模[J]. 北京理工大学学报, 2018, 38(1): 6-11, 19.ZHANGC Y, ZHANGF P, YANGR S, et al. Predictive modeling of cutting force based on local friction coefficient model[J]. Transactions of Beijing Institute of Technology, 2018, 38(1): 6-11, 19.(in Chinese)

    [15] [15] 谭云成, 杨建东, 夏仁丰. 考虑刀具磨损时的理论切削力[J]. 长春光学精密机械学院学报, 1995(2): 41-45.TANY C, YANGJ D, XIAR F. Theoretical cutting forces when tool wear is considered[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1995(2): 41-45.(in Chinese)

    [16] [16] 景岗. 一定切削用量和刀具磨损范围内的切削力数学模型及试验验证[J]. 云南工业大学学报, 1989(1): 48-60.JINGG. Math models of cutting forces within the range of certain utting conditions and tool wear and experimental verification of these models[J]. Journal of Yunnan Polytechnic University, 1989(1): 48-60.(in Chinese)

    [17] [17] 张宝金, 宋书善, 陈明. 基于刀具状态的切削力模型研究[J]. 工具技术, 2010, 44(2): 27-30.ZHANGB J, SONGS S, CHENM. Study of cutting force model based on tool condition[J]. Tool Engineering, 2010, 44(2): 27-30.(in Chinese)

    [18] HUANG Y, LIANG S Y. Modeling of cutting forces under hard turning conditions considering tool wear effect[J]. Journal of Manufacturing Science and Engineering, 127, 262-270(2005).

    [19] SMITHEY D W, KAPOOR S G, DEVOR R E. A new mechanistic model for predicting worn tool cutting forces[J]. Machining Science and Technology, 5, 23-42(2001).

    [20] SMITHEY D W, KAPOOR S G, DEVOR R E. A worn tool force model for three-dimensional cutting operations[J]. International Journal of Machine Tools and Manufacture, 40, 1929-1950(2000).

    [21] LI K M, LIANG S Y. Modeling of cutting forces in near dry machining under tool wear effect[J]. International Journal of Machine Tools and Manufacture, 47, 1292-1301(2007).

    [22] WU L, SHA K J, TAO Y et al. A hybrid deep learning model as the digital twin of ultra-precision diamond cutting for In-process prediction of cutting-tool wear[J]. Applied Sciences, 13, 6675(2023).

    [23] HUANG P, LEE W B. Cutting force prediction for ultra-precision diamond turning by considering the effect of tool edge radius[J]. International Journal of Machine Tools and Manufacture, 109, 1-7(2016).

    [24] ZHANG S, ZONG W J. FE-SPH hybrid method to simulate the effect of tool inclination angle in oblique diamond cutting of KDP crystal[J]. International Journal of Mechanical Sciences, 196, 106271(2021).

    [25] PRAMANIK A, ZHANG L C, ARSECULARATNE J A. Prediction of cutting forces in machining of metal matrix composites[J]. International Journal of Machine Tools and Manufacture, 46, 1795-1803(2006).

    [26] WANG Z F, ZHANG J J, XU Z W et al. Crystal anisotropy-dependent shear angle variation in orthogonal cutting of single crystalline copper[J]. Precision Engineering, 63, 41-48(2020).

    [27] ZHU Z W, ZHU W L et al. Cutting forces in fast-/ slow tool servo diamond turning of micro-structured surfaces[J]. International Journal of Machine Tools and Manufacture, 136, 62-75(2019).

    [28] SUN Z W, WANG S J. An analytical force model for ultra-precision diamond sculpturing of micro-grooves with textured surfaces[J]. International Journal of Mechanical Sciences, 160, 129-139(2019).

    [29] СИЛИН С С[M]. Методподобияприрезанииматериалов(1979).

    [30] SON S M, LIM H S, AHN J H. Effects of the friction coefficient on the minimum cutting thickness in micro cutting[J]. International Journal of Machine Tools and Manufacture, 45, 529-535(2005).

    [31] [31] 雷大江, 岳晓斌, 崔海龙, 等. 切点约束和探针针尖半径补偿的金刚石刀具刃口钝圆半径求解方法[J]. 光学 精密工程, 2017, 25(7): 1807-1814.LEID J, YUEX B, CUIH L, et al. Calculating method for circle radius of diamond tool edge based on tangent point constrain and probe tip radius compensation[J]. Opt. Precision Eng., 2017, 25(7): 1807-1814.(in Chinese)

    [32] WYEN C F, KNAPP W, WEGENER K. A new method for the characterisation of rounded cutting edges[J]. The International Journal of Advanced Manufacturing Technology, 59, 899-914(2012).

    [33] AKBARI M, KNAPP W, WEGENER K. Comparison of transparent objects metrology through diamond cutting edge radii measurements[J]. CIRP Journal of Manufacturing Science and Technology, 13, 72-84(2016).

    [34] YUSSEFIAN N Z, KOSHY P. Parametric characterization of the geometry of honed cutting edges[J]. Precision Engineering, 37, 746-752(2013).

    [35] YUAN Z J, ZHOU M, DONG S. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining[J]. Journal of Materials Processing Technology, 62, 327-330(1996).

    [36] RAHMAN M A, RAHMAN M, KUMAR A S. Chip perforation and ‘burnishing–like’ finishing of Al alloy in precision machining[J]. Precision Engineering, 50, 393-409(2017).

    [37] NIU Z C, JIAO F F, CHENG K. An innovative investigation on chip formation mechanisms in micro-milling using natural diamond and tungsten carbide tools[J]. Journal of Manufacturing Processes, 31, 382-394(2018).

    [38] WU X, LIU L, DU M Y et al. Experimental study on the minimum undeformed chip thickness based on effective rake angle in micro milling[J]. Micromachines, 11, 924(2020).

    [39] GRZESIK W, DENKENA B, ŻAK K et al. Correlation between friction and wear of cubic borone nitride cutting tools in precision hard machining[J]. Journal of Manufacturing Science and Engineering, 138(2016).

    [40] VENKATACHALAM S, LIANG S Y. Effects of ploughing forces and friction coefficient in microscale machining[J]. Journal of Manufacturing Science and Engineering, 129, 274-280(2007).

    [41] [41] 宗文俊, 王洪祥, 李旦, 等. 基于有限元法分析超精密切削中的摩擦问题[J]. 制造技术与机床, 2004(8): 88-91.ZONGW J, WANGH X, LID, et al. Analysis on the friction in ultra- precision turning based on finite element method[J]. Manufacturing Technology & Machine Tool, 2004(8): 88-91.(in Chinese)

    [42] DU M H, CHENG Z, WANG S S. Finite element modeling of friction at the tool-chip-workpiece interface in high speed machining of Ti6Al4V[J]. International Journal of Mechanical Sciences, 163, 105100(2019).

    [43] DENKENA B, BECKER J C, DE LEÓN-GARCÍA L. Study of the influence of the cutting edge microgeometry on the cutting forces and wear behavior in turning operations[C], 503-508(2005).

    [44] WYEN C F, WEGENER K. Influence of cutting edge radius on cutting forces in machining titanium[J]. CIRP Annals, 59, 93-96(2010).

    [45] LI P, CHANG Z Y. Numerical modeling of the effect of cutting-edge radius on cutting force and stress concentration during machining[J]. Micromachines, 13, 211(2022).

    [46] ŻYŁKA Ł, FLEJSZAR R, LAJMERT P. Influence of cutting-edge microgeometry on cutting forces in high-speed milling of 7075 aluminum alloy[J]. Materials, 16, 3859(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jicai KUAI, Yunqian DUAN, Xin LI, Shian LIU, Dmitrii Valerievich ARDASHEV. Effect of tool wear and variable friction coefficient on cutting force[J]. Optics and Precision Engineering, 2024, 32(14): 2211

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 10, 2024

    Accepted: --

    Published Online: Sep. 27, 2024

    The Author Email: Jicai KUAI (hitgjc@163.com)

    DOI:10.37188/OPE.20243214.2211

    Topics