Laser & Optoelectronics Progress, Volume. 58, Issue 24, 2410012(2021)

Polarization Thermal Image Segmentation Algorithm of Metal Fatigue Based on Gray Level and Information Entropy Fusion

Ruhai Zhao1,2、* and Fangbin Wang1,2,3
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 2Key Laboratory of Construction Machinery Fault Diagnosis and Early Warning Technology, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • 3Key Laboratory of Intelligent Manufacturing of Construction Machinery, Anhui Jianzhu University, Hefei, Anhui 230601, China
  • show less
    Figures & Tables(15)
    Infrared polarization information images. (a) 0° azimuth image; (b) 60° azimuth image; (c) 120° azimuth image; (d) s0 image; (e) s1 image; (f) s2 image; (g) DOP image; (h) AOP image
    Process of searching potential target regions. (a) Fusion results of multi azimuth image gray level and information entropy; (b) potential target region images
    Simulation segmentation results of 0°, 60°, 120° azimuth images
    Flow chart of multi-channel infrared polarized thermal image overall segmentation
    Specimen size
    Original images
    Process of multi-channel segmentation with fatigue cycle of 1000 times
    Process of multi-channel segmentation with fatigue cycle of 8000 times
    Process of multi-channel segmentation with fatigue cycle of 14000 times
    Comparison of segmentation results of different algorithms
    • Table 1. Some parameters and calculation results of potential target region at fatigue cycle of 1000 times

      View table

      Table 1. Some parameters and calculation results of potential target region at fatigue cycle of 1000 times

      Parameter60°120°
      G̅157150142
      H380.0331.1336.6
      Emax411.2363.4365.2
      ρ-9.8788×10-5-4.2433×10-4-8.7336×10-4
    • Table 2. Some parameters and calculation results of potential target region at fatigue cycle of 8000 times

      View table

      Table 2. Some parameters and calculation results of potential target region at fatigue cycle of 8000 times

      Parameter60°120°
      G̅158147138
      H406.8384.5382.5
      Emax436.4411.6406.5
      ρ-2.3927×10-4-2.6528×10-4-6.1364×10-4
    • Table 3. Some parameters and calculation results of potential target region at fatigue cycle 14000

      View table

      Table 3. Some parameters and calculation results of potential target region at fatigue cycle 14000

      Parameter60°120°
      G̅154144136
      H430.8423.9400.4
      Emax433.4447.7422.8
      ρ-6.5729×10-5-1.7110×10-4-5.6997×10-4
    • Table 4. GLC of different algorithms unit: %

      View table

      Table 4. GLC of different algorithms unit: %

      Algorithm1000 times8000 times14000 times
      FCM13.0923.1731.85
      OTSU14.8231.5736.07
      MEM38.0630.1436.29
      Proposed algorithm40.9446.4748.82
    • Table 5. δR of different algorithms unit: %

      View table

      Table 5. δR of different algorithms unit: %

      Algorithm1000 times8000 times14000 times
      FCM96.6995.6594.83
      OTSU96.3494.1793.66
      MEM63.5193.5993.66
      Proposed algorithm25.173.486.31
    Tools

    Get Citation

    Copy Citation Text

    Ruhai Zhao, Fangbin Wang. Polarization Thermal Image Segmentation Algorithm of Metal Fatigue Based on Gray Level and Information Entropy Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2410012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 12, 2021

    Accepted: Jun. 27, 2021

    Published Online: Dec. 1, 2021

    The Author Email: Ruhai Zhao (zhaoruhai@ahjzu.edu.cn)

    DOI:10.3788/LOP202158.2410012

    Topics