Chinese Journal of Lasers, Volume. 49, Issue 10, 1002605(2022)
Fabrication and Cell-Adhesion Evaluation of Laser-Ablated Microprotrusion or Microgroove on Titanium
[1] Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions[J]. Acta Biomaterialia, 10, 3815-3826(2014).
[2] Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications[J]. Acta Biomaterialia, 8, 3888-3903(2012).
[3] Kulkarni M, Mazare A, Gongadze E et al. Titanium nanostructures for biomedical applications[J]. Nanotechnology, 26, 062002(2015).
[4] Asgharzadeh Shirazi H, Ayatollahi M R, Asnafi A. To reduce the maximum stress and the stress shielding effect around a dental implant-bone interface using radial functionally graded biomaterials[J]. Computer Methods in Biomechanics and Biomedical Engineering, 20, 750-759(2017).
[5] Nappi F, Carotenuto A R, di Vito D et al. Stress-shielding, growth and remodeling of pulmonary artery reinforced with copolymer scaffold and transposed into aortic position[J]. Biomechanics and Modeling in Mechanobiology, 15, 1141-1157(2016).
[6] John A A, Jaganathan S K, Supriyanto E et al. Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics[J]. Current Science, 111, 1003-1015(2016).
[7] Kokovic V, Jung R, Feloutzis A et al. Immediate vs. early loading of SLA implants in the posterior mandible: 5-year results of randomized controlled clinical trial[J]. Clinical Oral Implants Research, 25, e114-e119(2014).
[8] Dar H Y, Azam Z, Anupam R et al. Osteoimmunology: the nexus between bone and immune system[J]. Frontiers in Bioscience (Landmark Edition), 23, 464-492(2018).
[9] Zhao Z H, Wan Y, Yu M Z et al. Effects of laser etching and anodic oxidation on surface properties of pure titanium implants[J]. China Surface Engineering, 33, 29-36(2020).
[10] Wang J J, Meng F H, Song W et al. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment[J]. International Journal of Nanomedicine, 13, 4029-4043(2018).
[11] Zwahr C, Welle A, Weingärtner T et al. Ultrashort pulsed laser surface patterning of titanium to improve osseointegration of dental implants[J]. Advanced Engineering Materials, 21, 1900639(2019).
[12] Afanasiev Y V, Chichkov B N, Demchenko N N et al. Ablation of metals by ultrashort laser pulses: theoretical modeling and computer simulations[J]. Journal of Russian Laser Research, 20, 89-115(1999).
[13] Tang J P, Zhang Y C, Yao Y S et al. High-performance ultrafine bubble aeration on janus aluminum foil prepared by laser microfabrication[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 37, 6947-6952(2021).
[14] Yong J L, Bai X, Yang Q et al. Filtration and removal of liquid polymers from water (polymer/water separation) by use of the underwater superpolymphobic mesh produced with a femtosecond laser[J]. Journal of Colloid and Interface Science, 582, 1203-1212(2021).
[15] Zuo P, Jiang L, Li X et al. Phase-reversed MoS2 nanosheets prepared through femtosecond laser exfoliation and chemical doping[J]. The Journal of Physical Chemistry C, 125, 8304-8313(2021).
[16] Li X L, Xu J, Zhang A D et al. Laser multifunctional fabrication of metallic microthermal components embedded in fused silica for microfluidic applications[J]. Optics & Laser Technology, 144, 107413(2021).
[17] Lin Z J, Xu J, Song Y P et al. Freeform microfluidic networks encapsulated in laser-printed 3D macroscale glass objects[J]. Advanced Materials Technologies, 5, 1900989(2020).
[18] Wu D, Qi X B, Cai Z et al. Direct generation of Airy beams at designed Fourier planes using integrated airy phase plates[J]. IEEE Photonics Technology Letters, 33, 595-598(2021).
[19] Wang F F, Jiang L, Sun J Y et al. One-step fabrication method of GaN films for internal quantum efficiency enhancement and their ultrafast mechanism investigation[J]. ACS Applied Materials & Interfaces, 13, 7688-7697(2021).
[20] Yong J L, Zhuang J, Bai X et al. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser[J]. Nanoscale, 13, 10414-10424(2021).
[21] Zhang Y M, Zhao Y M, Huang P et al. Surface energy analysis of treated titanium and effects on cell adhesion[J]. Rare Metal Materials and Engineering, 33, 518-521(2004).
[22] Chen P, Aso T, Sasaki R et al. Adhesion and differentiation behaviors of mesenchymal stem cells on titanium with micrometer and nanometer-scale grid patterns produced by femtosecond laser irradiation[J]. Journal of Biomedical Materials Research A, 106, 2735-2743(2018).
[23] Yang L, Ji S Y, Xie K N et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells[J]. Optics Express, 25, 8144-8157(2017).
[24] Yong J L, Huo J L, Yang Q et al. Femtosecond laser direct writing of porous network microstructures for fabricating super-slippery surfaces with excellent liquid repellence and anti-cell proliferation[J]. Advanced Materials Interfaces, 5, 1701479(2018).
[25] Chu D K, Yao P, Huang C Z. Anti-reflection silicon with self-cleaning processed by femtosecond laser[J]. Optics & Laser Technology, 136, 106790(2021).
[26] Meng X[D]. The study of femtosecond laser ablation process and surface morphology of solid materials, 30-32(2015).
[27] Mannion P T, Magee J, Coyne E et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science, 233, 275-287(2004).
[28] Bieda M, Lasagni A F, Beyer E. Fabrication of hierarchical microstructures on metals by means of direct laser interference patterning[J]. ICALEO, 900-907(2010).
[29] Ahmmed K M T, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 5, 1219-1253(2014).
[30] Liu S Q, Hu J, Zhao M J. Femtosecond laser-induced periodic surface structure and its applications[J]. Chinese Science Bulletin, 61, 1560-1573(2016).
[31] Du G Q, Yang Q, Chen F et al. Dynamic near-field nanofocusing by V-shaped metal groove via a femtosecond laser excitation[J]. Applied Physics A, 122, 185(2016).
[32] Bizi-Bandoki P, Benayoun S, Valette S et al. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment[J]. Applied Surface Science, 257, 5213-5218(2011).
[33] Dalawai S P, Aly M A S, Latthe S S et al. Recent advances in durability of superhydrophobic self-cleaning technology: a critical review[J]. Progress in Organic Coatings, 138, 105381(2020).
[34] Yong J L, Yang Q, Guo C L et al. A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation[J]. RSC Advances, 9, 12470-12495(2019).
[35] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).
[36] Jiang G C, Pan R, Chen C H et al. Ultrafast laser fabricated drag reduction micro-nano structures and their corrosion resistance[J]. Chinese Journal of Lasers, 47, 0802005(2020).
[37] Smeets R, Stadlinger B, Schwarz F et al. Impact of dental implant surface modifications on osseointegration[J]. BioMed Research International, 2016, 6285620(2016).
[38] Jiang J Y, Liu H Y, Zhang P et al. Preparation and biological properties of the fluoroalkyl silane superhydrophobic coatings on biomedical Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 48, 1884-1891(2019).
[39] Emelyanenko A M, Pytskii I S, Kaminsky V V et al. Superhydrophobic copper in biological liquids: antibacterial activity and microbiologically induced or inhibited corrosion[J]. Colloids and Surfaces B, 185, 110622(2020).
[40] Zeng Q Y, Zheng C Y, Han K et al. A biomimic superhydrophobic and anti-blood adhesion coating[J]. Progress in Organic Coatings, 140, 105498(2020).
[41] Long J Y, Zhong M L, Zhang H J et al. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air[J]. Journal of Colloid and Interface Science, 441, 1-9(2015).
[42] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).
[43] Long J Y, Zhong M L, Fan P X et al. Wettability conversion of ultrafast laser structured copper surface[J]. Journal of Laser Applications, 27, S29107(2015).
[44] Child T F, van Ooij W J. Application of silane technology to prevent corrosion of metals and improve paint adhesion[J]. Transactions of the IMF, 77, 64-70(1999).
[45] Luo X, Liu W J, Zhang H J et al. Ultrafast laser fabricating of controllable micro-nano dual-scale metallic surface structures and their functionalization[J]. Chinese Journal of Lasers, 48, 1502002(2021).
[46] Jiang L. Nanostructured materials with superhydrophobic surface: from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 22, 1258-1264(2003).
[47] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).
[48] Chodniewicz D, Klemke R L. Guiding cell migration through directed extension and stabilization of pseudopodia[J]. Experimental Cell Research, 301, 31-37(2004).
Get Citation
Copy Citation Text
Wanying He, Peng Yao, Dongkai Chu, Huiqiang Sun, Qingguo Lai, Qingwei Wang, Pengfei Wang, Shuoshuo Qu, Chuanzhen Huang. Fabrication and Cell-Adhesion Evaluation of Laser-Ablated Microprotrusion or Microgroove on Titanium[J]. Chinese Journal of Lasers, 2022, 49(10): 1002605
Received: Dec. 7, 2021
Accepted: Feb. 17, 2022
Published Online: May. 9, 2022
The Author Email: Yao Peng (yaopeng@sdu.edu.cn)