Journal of Synthetic Crystals, Volume. 53, Issue 3, 526(2024)

Effect of Bi and Ag Doping on the Thermoelectric Property of SnTe

GAO Lei1,2, YANG Xinyue1,2, LI Wenhao1,2, WANG Jianing1,2, LIU Ruixiu1,2, and ZHENG Shuqi3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(49)

    [1] [1] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554-557.

    [2] [2] ZHOU Y M, ZHAO L D. Promising thermoelectric bulk materials with 2D structures[J]. Advanced Materials, 2017, 29(45): 1702676.

    [3] [3] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457-1461.

    [4] [4] ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J]. Energy & Environmental Science, 2014, 7(1): 251-268.

    [5] [5] GUO Z, WU G, TAN X J, et al. Synergistic manipulation of interdependent thermoelectric parameters in SnTe-AgBiTe2 alloys by Mn doping[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29032-29038.

    [6] [6] SARKAR D, DAS S, BISWAS K. Valence band convergence and nanostructured phonon scattering trigger high thermoelectric performance in SnTe[J]. Applied Physics Letters, 2021, 119(25): 253901.

    [7] [7] BREBRICK R F, STRAUSS A J. Anomalous thermoelectric power as evidence for two-valence bands in SnTe[J]. Physical Review, 1963, 131(1): 104-110.

    [8] [8] SANTHANAM S, CHAUDHURI A K. Transport properties of SnTe interpreted by means of a two valence band model[J]. Materials Research Bulletin, 1981, 16(8): 911-917.

    [9] [9] ZHANG M Q, YANG D W, LUO H, et al. Super-structured defects modulation for synergistically optimizing thermoelectric property in SnTe-based materials[J]. Materials Today Physics, 2022, 23: 100645.

    [10] [10] CHEN Z Y, SUN Q A, ZHANG F J, et al. Mechanical alloying boosted SnTe thermoelectrics[J]. Materials Today Physics, 2021, 17: 100340.

    [11] [11] TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe[J]. Journal of the American Chemical Society, 2015, 137(35): 11507-11516.

    [12] [12] TAN G J, SHI F Y, DOAK J W, et al. Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe[J]. Energy & Environmental Science, 2015, 8(1): 267-277.

    [13] [13] LI J Q, HUANG S, CHEN Z P, et al. Phases and thermoelectric properties of SnTe with (Ge, Mn) co-doping[J]. Physical Chemistry Chemical Physics, 2017, 19(42): 28749-28755.

    [14] [14] MUCHTAR A R, SRINIVASAN B, LE TONQUESSE S, et al. Thermoelectrics: physical insights on the lattice softening driven mid-temperature range thermoelectrics of Ti/Zr-inserted SnTe—an outlook beyond the horizons of conventional phonon scattering and excavation of heikes’ equation for estimating carrier properties [J]. Advanced Energy Materials, 2021, 11(28): 2101122.

    [15] [15] MISRA S, WIENDLOCHA B, TOBOLA J, et al. Band structure engineering in Sn1.03Te through an In-induced resonant level[J]. Journal of Materials Chemistry C, 2020, 8(3): 977-988.

    [16] [16] PENG P P, WANG C, LI L W, et al. Enhanced thermoelectric performance of In-doped and AgCuTe-alloyed SnTe through band engineering and endotaxial nanostructures[J]. Physical Chemistry Chemical Physics, 2022, 24(44): 27105-27113.

    [17] [17] YANG H J, DUAN B, ZHOU L, et al. Rapid fabrication and thermoelectric properties of Sn1.03Te-based materials with porous configuration[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(5): 2479-2489.

    [18] [18] PANG H M, ZHANG X X, WANG D Y, et al. Realizing ranged performance in SnTe through integrating bands convergence and DOS distortion[J]. Journal of Materiomics, 2022, 8(1): 184-194.

    [19] [19] DONG J F, SUN F H, TANG H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance[J]. Energy & Environmental Science, 2019, 12(4): 1396-1403.

    [20] [20] TANG J, GAO B, LIN S Q, et al. Manipulation of band structure and interstitial defects for improving thermoelectric SnTe[J]. Advanced Functional Materials, 2018, 28(34): 1803586.

    [21] [21] TANG J, GAO B, LIN S Q, et al. Manipulation of solubility and interstitial defects for improving thermoelectric SnTe alloys[J]. ACS Energy Letters, 2018, 3(8): 1969-1974.

    [22] [22] BANIK A, GHOSH T, ARORA R, et al. Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe[J]. Energy & Environmental Science, 2019, 12(2): 589-595.

    [23] [23] CHEN Z Y, GUO X M, TANG J, et al. Extraordinary role of Bi for improving thermoelectrics in low-solubility SnTe-CdTe alloys[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26093-26099.

    [24] [24] TAN H A, GUO L J, WANG G W, et al. Synergistic effect of bismuth and indium codoping for high thermoelectric performance of melt spinning SnTe alloys[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23337-23345.

    [25] [25] TAN G J, ZEIER W G, SHI F Y, et al. High thermoelectric performance SnTe-In2Te3 solid solutions enabled by resonant levels and strong vacancy phonon scattering[J]. Chemistry of Materials, 2015, 27(22): 7801-7811.

    [26] [26] ZHANG Q, LIAO B L, LAN Y C, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13261-13266.

    [27] [27] MA Z, WANG C, LEI J D, et al. Core-shell nanostructures introduce multiple potential barriers to enhance energy filtering for the improvement of the thermoelectric properties of SnTe[J]. Nanoscale, 2020, 12(3): 1904-1911.

    [28] [28] ZHOU Z W, YANG J Y, JIANG Q H, et al. Thermoelectric performance of SnTe with ZnO carrier compensation, energy filtering, and multiscale phonon scattering[J]. Journal of the American Ceramic Society, 2017, 100(12): 5723-5730.

    [29] [29] TAN G J, ZHAO L D, SHI F Y, et al. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach[J]. Journal of the American Chemical Society, 2014, 136(19): 7006-7017.

    [30] [30] ZHANG F J, ZHAO X W, LI R H, et al. Enhanced thermoelectric performance in high-defect SnTe alloys: a significant role of carrier scattering[J]. Journal of Materials Chemistry A, 2022, 10(44): 23521-23530.

    [31] [31] ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: the case for the light band[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(38): 20741-20748.

    [32] [32] BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties[J]. Chemistry of Materials, 2015, 27(2): 581-587.

    [33] [33] TAN X J, SHAO H Z, HE J, et al. Band engineering and improved thermoelectric performance in M-doped SnTe (M=Mg, Mn, Cd, and Hg)[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(10): 7141-7147.

    [34] [34] TAN X F, LIU G Q, XU J T, et al. Thermoelectric properties of In-Hg co-doping in SnTe: energy band engineering[J]. Journal of Materiomics, 2018, 4(1): 62-67.

    [35] [35] CHEN Z Y, TANG J, GUO X M, et al. Improving near-room-temperature thermoelectrics in SnTe-MnTe alloys[J]. Applied Physics Letters, 2020, 116(19): 193902.

    [36] [36] AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe-CaTe alloys[J]. Chemistry of Materials, 2016, 28(1): 376-384.

    [37] [37] WU D, CHEN X A, ZHENG F S, et al. Dislocation evolution and migration at grain boundaries in thermoelectric SnTe[J]. ACS Applied Energy Materials, 2019, 2(4): 2392-2397.

    [38] [38] TAN G J, HAO S Q, HANUS R C, et al. High thermoelectric performance in SnTe-AgSbTe2 alloys from lattice softening, giant phonon-vacancy scattering, and valence band convergence[J]. ACS Energy Letters, 2018, 3(3): 705-712.

    [39] [39] ACHARYA S, PANDEY J, SONI A. Soft phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping[J]. Applied Physics Letters, 2016, 109(13): 133904.

    [40] [40] HANUS R, AGNE M, RETTIE A, et al. Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency[J]. Advanced Materials, 2019, 31(21): 1900108.

    [41] [41] ZHOU Z W, YANG J Y, JIANG Q H, et al. Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe[J]. Journal of Materials Chemistry A, 2016, 4(34): 13171-13175.

    [42] [42] LEE Y, LO S H, CHEN C Q, et al. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide[J]. Nature Communications, 2014, 5: 3640.

    [43] [43] HAN M K, HOANG K, KONG H J, et al. Substitution of Bi for Sb and its role in the thermoelectric properties and nanostructuring in Ag1-xPb18MTe20 (M=Bi, Sb) (x=0, 0.14, 0.3)[J]. Chemistry of Materials, 2008, 20(10): 3512-3520.

    [44] [44] TAN G J, SHI F Y, SUN H, et al. SnTe-AgBiTe2 as an efficient thermoelectric material with low thermal conductivity[J]. Journal of Materials Chemistry A, 2014, 2(48): 20849-20854.

    [45] [45] KRESSE G, FURTHMLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.

    [46] [46] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.

    [47] [47] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [48] [48] TIAN B Z, CHEN J E, JIANG X P, et al. Enhanced thermoelectric performance of SnTe-based materials via interface engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50057-50064.

    [49] [49] LI W H, GAO L, WEI S T, et al. Improved thermoelectric performance by microwave wet chemical synthesis of low thermal conductivity SnTe[J]. Physica B: Condensed Matter, 2023, 660: 414894.

    Tools

    Get Citation

    Copy Citation Text

    GAO Lei, YANG Xinyue, LI Wenhao, WANG Jianing, LIU Ruixiu, ZHENG Shuqi. Effect of Bi and Ag Doping on the Thermoelectric Property of SnTe[J]. Journal of Synthetic Crystals, 2024, 53(3): 526

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 15, 2023

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Shuqi ZHENG (zhengsq09@163.com)

    DOI:

    CSTR:32186.14.

    Topics