Collection Of theses on high power laser and plasma physics, Volume. 13, Issue 1, 30308(2015)

Three-dimensional array diffraction-limited foci from Greek ladders to generalized Fibonacci sequences

Junyong Zhang*
Author Affiliations
  • Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    References(32)

    [1] [1] D. J. Stigliani, Jr., R. Mittra, and R. G. Semonin, “Resolving power of a zone plate,” J. Opt. Soc. Am. 57(5), 610–613 (1967).

    [2] [2] E. Champagne, “Optical method for producing Fresnel zone plates,” Appl. Opt. 7(2), 381–382 (1968).

    [3] [3] M. D. Tipton and J. E. Dowdey, “Coded aperture imaging with on-axis Fresnel zone plates,” Opt. Eng. 12(5), 166–168 (1973).

    [4] [4] H. Kyuragi and T. Urisu, “Higher-order suppressed phase zone plates,” Appl. Opt. 24(8), 1139–1141 (1985).

    [5] [5] J. A. Sun and A. Cai, “Archaic focusing properties of Fresnel zone plates,” J. Opt. Soc. Am. 8(1), 33–35 (1991).

    [6] [6] G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28(12), 971–973 (2003).

    [7] [7] J. A. Davis, S. P. Sigarlaki, J. M. Craven, and M. L. Calvo, “Fourier series analysis of fractal lenses: theory and experiments with a liquid-crystal display,” Appl. Opt. 45(6), 1187–1192 (2006).

    [8] [8] V. Ferrando, A. Calatayud, F. Giménez, W. D. Furlan, and J. A. Monsoriu, “Cantor dust zone plates,” Opt. Express 21(3), 2701–2706 (2013).

    [9] [9] L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).

    [10] [10] Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003).

    [11] [11] G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).

    [12] [12] F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, “Fractal photon sieve,” Opt. Express 14(25), 11958–11963 (2006).

    [13] [13] H.-H. Chung, N. M. Bradman, M. R. Davidson, and P. H. Holloway, “Dual wavelength photon sieves,” Opt. Eng. (Bellingham) 47(11), 118001 (2008).

    [14] [14] G. Cheng, C. Hu, P. Xu, and T. Xing, “Zernike apodized photon sieves for high-resolution phase-contrast x-ray microscopy,” Opt. Lett. 35(21), 3610–3612 (2010).

    [15] [15] J. Jia and C. Xie, “Phase zone photon sieve,” Chin. Phys. B 18(1), 183–188 (2009).

    [16] [16] C. Zhou, X. Dong, L. Shi, C. Wang, and C. Du, “Experimental study of a multiwavelength photon sieve designed by random-area-divided approach,” Appl. Opt. 48(8), 1619–1623 (2009).

    [17] [17] C. Xie, X. Zhu, L. Shi, and M. Liu, “Spiral photon sieves apodized by digital prolate spheroidal window for the generation of hard-x-ray vortex,” Opt. Lett. 35(11), 1765–1767 (2010).

    [18] [18] A. Sabatyan and S. Mirzaie, “Efficiency-enhanced photon sieve using Gaussian/overlapping distribution of pinholes,” Appl. Opt. 50(11), 1517–1522 (2011).

    [19] [19] X. Zhao, F. Xu, J. Hu, and C. Wang, “Broadband photon sieves imaging with wavefront coding,” Opt. Express 23(13), 16812–16822 (2015).

    [20] [20] J. A. Monsoriu, A. Calatayud, L. Remon, W. D. Furlan, G. Saavedra, and P. Andrés, “Bifocal Fibonacci diffraction lenses,” IEEE Photonics J. 5(3), 3400106 (2013).

    [21] [21] A. Calatayud, V. Ferrando, L. Remon, W. D. Furlan, and J. A. Monsoriu, “Twin axial vortices generated by Fibonacci lenses,” Opt. Express 21(8), 10234–10239 (2013).

    [22] [22] V. Ferrando, A. Calatayud, P. Andrés, R. Torroba, W. D. Furlan, and J. A. Monsoriu, “Imaging properties of Kinoform Fibonacci lenses,” IEEE Photonics J. 6(1), 6500106 (2014).

    [23] [23] J. Ke, J. Zhang, and J. Zhu, “Focusing properties of modified Fibonacci photon sieve,” Chin. Opt. Lett. 13(8), 080501–080504 (2015).

    [24] [24] J. Ke and J. Zhang, “Generalized Fibonacci photon sieves,” Appl. Opt. 54(24), 7278–7283 (2015).

    [25] [25] H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta (Lond.) 24(4), 505–515 (1977).

    [26] [26] C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt. 34(26), 5961–5969 (1995).

    [27] [27] C. Zhou, J. Jia, and L. Liu, “Circular Dammann grating,” Opt. Lett. 28(22), 2174–2176 (2003).

    [28] [28] J. Yu, C. Zhou, W. Jia, W. Cao, S. Wang, J. Ma, and H. Cao, “Three-dimensional Dammann array,” Appl. Opt. 51(10), 1619–1630 (2012).

    [29] [29] J. R. Ridenhour, “Ladder Approximations of Irrational Numbers,” Math. Mag. 59(2), 95–105 (1986).

    [30] [30] T. J. Osler, M. Wright, and M. Orchard, “Theon’s ladder for any root,” Int. J. Math. Educ. Sci. Technol. 36(4), 389–398 (2005).

    [31] [31] C. Horgan and K. Herzinger, “A further investigation of using Theon’s ladder to find roots of quadratic equations,” Int. J. Math. Educ. Sci. Technol. 45(1), 150–158 (2014).

    [32] [32] L. G. Hua, An Introduction to Number Theory (Science Press, 1979).

    Tools

    Get Citation

    Copy Citation Text

    Junyong Zhang. Three-dimensional array diffraction-limited foci from Greek ladders to generalized Fibonacci sequences[J]. Collection Of theses on high power laser and plasma physics, 2015, 13(1): 30308

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 8, 2015

    Accepted: --

    Published Online: May. 27, 2017

    The Author Email: Zhang Junyong (zhangjin829@163.com)

    DOI:10.1364/oe.23.030308

    Topics