Acta Photonica Sinica, Volume. 53, Issue 8, 0810001(2024)
A Multi-scale Hierarchical Residual Network-based Method for Tiny Object Detection in Optical Remote Sensing Images
[1] XIA G S, BAI X, DING J et al. DOTA: a large-scale dataset for object detection in aerial images[C], 3974-3983(2018).
[2] HAN W, CHEN J, WANG L Z et al. Methods for small, weak object detection in optical high-resolution remote sensing images: a survey of advances and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 9, 8-34(2021).
[3] CHENG G, YUAN X, YAO X W et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 13467-13488(2023).
[4] LI Andong, LIN Zaiping, AN Wei et al. Infrared small target detection in compressive domain based on self-adaptive parameter configuration[J]. Chinese Journal of Lasers, 42, 1008003(2015).
[5] HE K M, ZHANG X Y, REN S Q et al. Deep residual learning for image recognition[C], 770-778(2016).
[6] ZHANG Xiuzai, SHEN Tao, XU Dai. Remote-sensing image object detection based on improved YOLOv8 algorithm[J]. Laser & Optoelectronics Progress, 61, 1028001(2024).
[7] ZHANG J Q, LEI J, XIE W Y et al. SuperYOLO: super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15(2023).
[8] FANG X L, HU F, YANG M et al. Small object detection in remote sensing images based on super-resolution[J]. Pattern Recognition Letters, 153, 107-112(2022).
[10] CHEN C R, ZHANG Y, LV Q X et al. RRNet: a hybrid detector for object detection in drone-captured images[C], 100-108(2019).
[11] WU J X, PAN Z X, LEI B et al. FSANet: feature-and-spatial-aligned network for tiny object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17(2022).
[12] LIU Nan, MAO Zhaoyong, WANG Yichen et al. Remote sensing images target detection based on adjustable parameter and receptive field[J]. Acta Photonica Sinica, 50, 1128001(2021).
[13] XUE Junda, ZHU Jiajia, ZHANG Jing et al. Object detection in optical remote sensing images based on FFC-SSD model[J]. Acta Optica Sinica, 42, 1210002(2022).
[14] WANG Youwei, GUO Ying, SHAO Xiangying. Target detection in remote sensing images based on improved cascade algorithm[J]. Acta Optica Sinica, 42, 2428004(2022).
[15] FU Hongjian, BAI Hongyang, GUO Hongwei et al. Object detection method of optical remote sensing image with multi-attention mechanism[J]. Acta Photonica Sinica, 51, 1210003(2022).
[16] HU Zhaohua, LI Yuhui. Object detection algorithm in remote sensing images based on improved YOLOX[J]. Laser & Optoelectronics Progress, 61, 1228004(2024).
[18] FU R H, CHEN C C, YAN S et al. Gaussian similarity-based adaptive dynamic label assignment for tiny object detection[J]. Neurocomputing, 543, 126285(2023).
[20] YU X H, GONG Y Q, JIANG N et al. Scale match for tiny person detection[C], 1246-1254(2020).
[21] WANG C Y, LIAO H Y M, WU Y H et al. Cspnet: a new backbone that can enhance learning capability of cnn[C], 1571-1580(2020).
[22] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C], 13024-13033(2021).
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C], 7464-7475(2023).
[24] GAO S H, CHENG M M, ZHAO K et al. Res2Net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 652-662(2021).
[28] LIU Z, LIN Y T, CAO Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 9992-10002(2021).
[30] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C], 6154-6162(2018).
[31] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[32] SUN P Z, ZHANG R F, JIANG Y et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C], 14449-14458(2018).
[33] QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C], 10208-10219(2021).
[34] HE K M, GKIOXARI G, DOLLAR P et al. Mask R-CNN[C], 2980-2988(2017).
Get Citation
Copy Citation Text
Xiangjin ZENG, Genghuan LIU, Jianming CHEN, Jiazhen DOU, Zhenbo REN, Jianglei DI, Yuwen QIN. A Multi-scale Hierarchical Residual Network-based Method for Tiny Object Detection in Optical Remote Sensing Images[J]. Acta Photonica Sinica, 2024, 53(8): 0810001
Category:
Received: Jan. 11, 2024
Accepted: Mar. 5, 2024
Published Online: Oct. 15, 2024
The Author Email: Jianglei DI (jiangleidi@gdut.edu.cn), Yuwen QIN (qinyw@gdut.edu.cn)