Chinese Journal of Lasers, Volume. 51, Issue 5, 0506002(2024)
Faster‑than‑Nyquist Mode Division Multiplexing Passive Optical Network Based on Joint Damage Compensation Method
[1] Simon G, Saliou F, Chanclou P et al. 50 Gb/s TDM PON digital signal processing challenges: mining current G-PON field data to assist higher speed PON[C](2021).
[2] Feituri A B, Abdullah M F L, Swedan A A et al. Optimization of basic 25 Gb/s TDM-PON for new era application[C], 586-589(2022).
[3] Liu F N, Weng Y B, Liu Z et al. Research on direct detection fiber transmission system based on hybrid multiplexing of mode division and wavelength division[J]. Optical Communication Technology, 46, 64-69(2022).
[4] Lai D N, Zhu Y Q, Chen X et al. Comparison of enhanced DD-LMS and MCMA in PDM-PAM4 PON utilizing heterodyne coherent detection[C], 616-620(2022).
[5] Ouyang Y J, Zhang Q W, Huang Y T et al. MIMO pre-equalization based mode crosstalk mitigation method in mode division multiplexing passive optical network[J]. Chinese Journal of Lasers, 50, 0606002(2023).
[6] Zhang Q, Guo Y B, Chen J K et al. A communication experiment using mode division multiplexing with phase modulation-coherent detection[J]. Chinese Journal of Lasers, 47, 0306001(2020).
[7] Caglan A, Cicek A, Cavus E et al. Polar coded faster-than-Nyquist (FTN) signaling with symbol-by-symbol detection[C](2020).
[8] Sharma A, Kaur S, Nair N et al. Investigation of WDM-MDM PON employing different modulation formats[J]. Optik, 257, 168855(2022).
[9] Chen J K, Hu G J, Han Y Y. Communication experimental system with 3×3 mode division multiplexing based on photonic lantern[J]. Chinese Journal of Lasers, 44, 1106009(2017).
[10] Ibrahim A, Bedeer E, Yanikomeroglu H. A novel low complexity faster-than-Nyquist (FTN) signaling detector for ultra high-order QAM[J]. IEEE Open Journal of the Communications Society, 2, 2566-2580(2021).
[11] Tong M F, Huang X J, Zhang J A. Frame-based decision directed successive interference cancellation for FTN signaling[C], 1670-1674(2023).
[12] Cui J, Gao Y Y, Yang Y et al. Design of a highly mode-selective photonic lantern for IM/DD MDM transmission[J]. Optics Communications, 541, 129550(2023).
[13] Ge D W, Gao Y Y, Yang Y et al. A 6-LP-mode ultralow-modal-crosstalk double-ring-core FMF for weakly-coupled MDM transmission[J]. Optics Communications, 451, 97-103(2019).
[14] Lee D, Shibahara K, Kobayashi T et al. A sparsity managed adaptive MIMO equalization for few-mode fiber transmission with various differential mode delays[J]. Journal of Lightwave Technology, 34, 1754-1761(2015).
[15] Zhou J H, Zheng G Z, Wu J J et al. An equalization initialization procedure for MDM systems based on orthogonal matching pursuit[J]. IEEE Photonics Technology Letters, 29, 1868-1871(2017).
[16] Che H, Bai Y. M-BCJR algorithm with channel shortening based on ungerboeck observation model for faster-than-Nyquist signaling[J]. China Communications, 18, 88-98(2021).
[17] Liang X H, Liu A J, Wang K et al. Symbol-by-symbol detection for faster-than-Nyquist signaling aided with frequency-domain precoding[C], 14-17(2016).
[18] Wen S, Liu G H, Liu C X et al. Joint precoding and pre-equalization for faster-than-Nyquist transmission over multipath fading channels[J]. IEEE Transactions on Vehicular Technology, 71, 3948-3963(2022).
[19] Arbi T, Geller B. Hybrid turbo equalization for faster-than-Nyquist underwater communication systems[C](2022).
[20] Yuan W J, Wu N, Wang H et al. Variational inference-based frequency-domain equalization for faster-than-Nyquist signaling in doubly selective channels[J]. IEEE Signal Processing Letters, 23, 1270-1274(2016).
[21] Li S Y, Bai B M, Zhou J et al. Reduced-complexity equalization for faster-than-Nyquist signaling: new methods based on ungerboeck observation model[J]. IEEE Transactions on Communications, 66, 1190-1204(2018).
[22] Tabares J A, Ghasemi S, Velásquez J C et al. Coherent ultra-dense WDM-PON enabled by complexity-reduced digital transceivers[J]. Journal of Lightwave Technology, 38, 1305-1313(2020).
[23] Teixeira A, Lavery D, Ciaramella E et al. DSP enabled optical detection techniques for PON[J]. Journal of Lightwave Technology, 38, 684-695(2020).
[24] Jana M, Lampe L, Mitra J. Precoded time-frequency-packed multicarrier faster-than-Nyquist transmission[C](2019).
[25] Wang H, Liu A J, Liang X H et al. Linear precoding for faster-than-Nyquist signaling[C], 52-56(2018).
[26] Li J H, Hu T, Ren F et al. Hybrid passive optical network enabled by mode-division-multiplexing[C](2015).
[27] Zhang K W, Li J H, Zhu J L et al. A coexistence scheme for different kinds of PONs based on weakly-coupled MDM-PON[C](2019).
[28] Hu T, Li J H, Zhang Y C et al. Wavelength-insensitive weakly coupled FMFs and components for the MDM-GPON[J]. IEEE Photonics Technology Letters, 30, 1277-1280(2018).
[29] Yang M, Wang L L, Wang H Y et al. MDM transmission of 3-D CAP over 4.1-km ring-core fiber in passive optical networks[C](2021).
[30] Ren F, Li J H, Hu T et al. Experimental demonstration of 3-mode MDM-PON transmission over 7.4-km low-mode-crosstalk FMF[C](2016).
Get Citation
Copy Citation Text
Qianwu Zhang, Shucheng Zhan, Boyang Liu, Guanwen Chen, Zhiyu Li, Yuanjiang Ouyang, Bingyao Cao, Zhengxuan Li, Yating Wu. Faster‑than‑Nyquist Mode Division Multiplexing Passive Optical Network Based on Joint Damage Compensation Method[J]. Chinese Journal of Lasers, 2024, 51(5): 0506002
Category: Fiber optics and optical communication
Received: Jun. 21, 2023
Accepted: Aug. 4, 2023
Published Online: Mar. 5, 2024
The Author Email: Zhang Qianwu (zhangqianwu@shu.edu.cn)
CSTR:32183.14.CJL230945