Laser & Optoelectronics Progress, Volume. 62, Issue 8, 0837005(2025)

Research on Floc Feature Detection Method Based on Improved Density Map and Local Enhanced CNN

Jie Luo* and Junran Zhang
Author Affiliations
  • College of Electrical Engineering, Sichuan University, Chengdu 610065, Sichuan , China
  • show less
    References(25)

    [1] Tang C C, Feng W T, Xu H Y et al. Research progress of ultrafiltration process based on coagulation pretreatment[J]. Technology of Water Treatment, 50, 1-7(2024).

    [2] Guo S K, Guo J W, Wen C B et al. Research and application progress of judging the performance of flocs based on image processing in water coagulation[J]. Thermal Power Generation, 53, 1-9(2024).

    [4] Zeng L. Research on floc recognition method in water based on image processing[D](2019).

    [5] Qiu T, Luo Q P, Guan G A. Research progress of the machine vision in floc detection[J]. Jiangxi Chemical Industry, 37, 75-79(2021).

    [8] He C L. Deep learning-based intelligent detection of sludge flocs for applied research[D], 1-6(2023).

    [10] Jiao X M, Liu W L, Yang Z Y et al. Extraction of characteristic parameters of coal slime flocs and its dynamic change[J]. Journal of Mining Science and Technology, 2, 503-510(2017).

    [11] Ma Q D, Kong Y P, Li B Y et al. Analysis and application of flocs image texture features in water treatment process[J]. Water & Wastewater Engineering, 59, 15-20(2023).

    [12] Gao L. Optimization of coagulant dosage based on artificial intelligence[D], 9-47(2023).

    [15] Yu Y J, Wang Y, Li H et al. Channel-wise attention mechanism relevant UNet-based DiffractionLimited fluorescence spot detection and localization[J]. Laser & Optoelectronics Progress, 60, 1412004(2023).

    [16] Tao Y, Tan H, Zhou L Q. ULCF-Net: underwater dark light image enhancement algorithm based on cross scale structure and color fusion[J]. Laser & Optoelectronics Progress, 62, 0237011(2025).

    [17] Wang J, Wu M, Xiang J K. X-ray rapid decentralized detection model of U2-Net with dilated convolution optimization[J]. Laser & Optoelectronics Progress, 61, 1512006(2024).

    [23] Li Z X, Lu S H, Lan L Q et al. Convolutional neural network method for crowd counting improved using involution operator[J]. Laser & Optoelectronics Progress, 59, 1815004(2022).

    [24] Zhao Z Q, Ma P H, Hei X H. Crowd counting method based on dual attention mechanism[J]. Journal of Computer Applications, 44, 2886-2892(2024).

    [25] Sun S, He L F, Zhu F et al. Multi-branch feature fusion network for crowd counting[J]. Computer Engineering and Design, 45, 814-821(2024).

    Tools

    Get Citation

    Copy Citation Text

    Jie Luo, Junran Zhang. Research on Floc Feature Detection Method Based on Improved Density Map and Local Enhanced CNN[J]. Laser & Optoelectronics Progress, 2025, 62(8): 0837005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Aug. 21, 2024

    Accepted: Oct. 8, 2024

    Published Online: Apr. 7, 2025

    The Author Email:

    DOI:10.3788/LOP241883

    CSTR:32186.14.LOP241883

    Topics