Chinese Journal of Lasers, Volume. 49, Issue 2, 0202002(2022)

Ultrafast Laser Patterning Deposition of Micron Sliver Bumps for Chip Bonding Application

Yongchao Wu1, Jintao Hu1, Wei Guo1, Lei Liu2, Hui Kang1, and Peng Peng1、*
Author Affiliations
  • 1School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
  • 2State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China
  • show less
    References(38)

    [1] Zou G S, Yan J F, Mu F W et al. Recent progress in microjoining and nanojoining[J]. Transactions of the China Welding Institution, 32, 107-112, 118(2011).

    [2] Ahari A, Hsiao A, Baty G et al. Microstructure signature evolution in solder joints, solder bumps, and micro-bumps interconnection in a large 2.5D FCBGA package during thermo-mechanical cycling[C], 1099-1105(2019).

    [3] Zhu Q S, Gao F, Ma H C et al. Failure behavior of flip chip solder joint under coupling condition of thermal cycling and electrical current[J]. Journal of Materials Science: Materials in Electronics, 29, 5025-5033(2018).

    [4] Chin H S, Cheong K Y, Ismail A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical and Materials Transactions B, 41, 824-832(2010).

    [5] Guo W, Zhang H Q, Zhang X Y et al. Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering[J]. Journal of Alloys and Compounds, 690, 86-94(2017).

    [6] Wu Z J, Cai J, Wang J Q et al. Low-temperature Cu-Cu bonding using silver nanoparticles fabricated by physical vapor deposition[J]. Journal of Electronic Materials, 47, 988-993(2018).

    [7] Wang S, Ji H J, Li M Y et al. Pressureless low temperature sintering of Ag nanoparticles applied to electronic packaging[J]. Electronics Process Technology, 33, 317-319(2012).

    [8] Paknejad S A, Mannan S H. Review of silver nanoparticle based die attach materials for high power/temperature applications[J]. Microelectronics Reliability, 70, 1-11(2017).

    [9] Li M, Xiao Y, Zhang Z et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces, 7, 9157-9168(2015).

    [10] Yang J L, Dong C C, Luo J. Development of low-temperature sintered nanoscale silver for new power device packaging[J]. Materials Reports, 33, 360-364(2019).

    [11] Guo W, Zeng Z, Zhang X Y et al. Low-temperature sintering bonding using silver nanoparticle paste for electronics packaging[J]. Journal of Nanomaterials, 2, 1-7(2015).

    [12] Suganuma K, Sakamoto S, Kagami N et al. Low-temperature low-pressure die attach with hybrid silver particle paste[J]. Microelectronics Reliability, 52, 375-380(2012).

    [13] Manikam V R, Cheong K Y. Die attach materials for high temperature applications: a review[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1, 457-478(2011).

    [14] Zhang Y C, Yan J F, Zou G S et al. Low temperature sintering-bonding using mixed Cu+Ag nanoparticle paste for packaging application[J]. Transactions of the China Welding Institution, 34, 17-21, 114(2013).

    [15] Zhang H, Nagao S, Suganuma K. Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain growth kinetics of sintered porous Ag[J]. Journal of Electronic Materials, 44, 3896-3903(2015).

    [16] Gillman A, Roelofs M J G H, Matouš K et al. Microstructure statistics-property relations of silver particle-based interconnects[J]. Materials & Design, 118, 304-313(2017).

    [17] Yu F, Cui J Z, Zhou Z M et al. Reliability of Ag sintering for power semiconductor die attach in high-temperature applications[J]. IEEE Transactions on Power Electronics, 32, 7083-7095(2017).

    [18] Siow K S. Mechanical properties of nano-silver joints as die attach materials[J]. Journal of Alloys and Compounds, 514, 6-19(2012).

    [19] Wang T, Chen X, Lu G Q et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. Journal of Electronic Materials, 36, 1333-1340(2007).

    [20] Khazaka R, Mendizabal L, Henry D. Review on joint shear strength of nano-silver paste and its long-term high temperature reliability[J]. Journal of Electronic Materials, 43, 2459-2466(2014).

    [21] Liu J D, Chen H T, Ji H J et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 8, 33289-33298(2016).

    [22] Gawande M B, Goswami A, Felpin F X et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis[J]. Chemical Reviews, 116, 3722-3811(2016).

    [23] Tian Y H, Jiang Z, Wang C X et al. Sintering mechanism of the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 6, 91783-91790(2016).

    [24] Yang W C, Wang S, Zhu W B et al. Preparation and connection performance analysis of solder paste by low-temperature sintering Cu nanoparticles[J]. Transactions of the China Welding Institution, 39, 72-76, 132(2018).

    [25] Suganuma K, Jiu J T. Advanced bonding technology based on nano- and micro-metal pastes[M]. Lu D, Wong C P. Materials for advanced packaging, 589-626(2017).

    [26] Schmitt W, Chew L M, Miller R. Pressure-less sintering on large dies using infrared radiation and optimized silver sinter paste[C], 539-544(2018).

    [27] Zhang H Q, Zou G S, Liu L et al. Low temperature sintering of silver nanoparticle paste forelectronic packaging[C], 314-317(2016).

    [28] Zhang H Q, Wang W G, Bai H L et al. Microstructural and mechanical evolution of silver sinteringdie attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 774, 487-494(2019).

    [29] Heuck N, Müller S, Palm G et al. Swelling phenomena in sintered silver die attach structures at high temperatures: reliability problems and solutions for an operation above 350 ℃[J]. Additional Conferences, 2010, 18-25(2010).

    [30] Deng Z Y, Jia Q, Feng B et al. Research progress on fabrication and applications of high-performance films by pulsed laser deposition[J]. Chinese Journal of Lasers, 48, 0802010(2021).

    [31] Feng B, Shen D Z, Wang W G et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 11, 16972-16980(2019).

    [32] Zubir N S M, Zhang H Q, Zou G S et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials, 48, 7562-7572(2019).

    [33] Wang W G, Zou G S, Jia Q et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering: A, 793, 139894(2020).

    [34] Wang W G, Jia Q et al. Microstructure and property evolutions of joints sintered by silver micro- and nano-particles composite film[J]. Chinese Journal of Lasers, 48, 0802015(2021).

    [35] Jia Q, Wang W G et al. Low-temperature bonding of Ag-Pd nanoalloy and its resistance to electrochemical-migration[J]. Chinese Journal of Lasers, 48, 0802014(2021).

    [36] Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles[J]. International Materials Reviews, 53, 326-352(2008).

    [37] Manikam V R, Razak K A, Cheong K Y. Sintering of silver-aluminum nanopaste with varying aluminum weight percent for use as a high-temperature Die-attach material[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 1940-1948(2012).

    [38] Chua S T, Siow K S. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 ℃[J]. Journal of Alloys and Compounds, 687, 486-498(2016).

    Tools

    Get Citation

    Copy Citation Text

    Yongchao Wu, Jintao Hu, Wei Guo, Lei Liu, Hui Kang, Peng Peng. Ultrafast Laser Patterning Deposition of Micron Sliver Bumps for Chip Bonding Application[J]. Chinese Journal of Lasers, 2022, 49(2): 0202002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Feb. 24, 2021

    Accepted: May. 6, 2021

    Published Online: Dec. 1, 2021

    The Author Email: Peng Peng (ppeng@buaa.edu.cn)

    DOI:10.3788/CJL202249.0202002

    Topics