Chinese Journal of Lasers, Volume. 49, Issue 2, 0202002(2022)
Ultrafast Laser Patterning Deposition of Micron Sliver Bumps for Chip Bonding Application
[1] Zou G S, Yan J F, Mu F W et al. Recent progress in microjoining and nanojoining[J]. Transactions of the China Welding Institution, 32, 107-112, 118(2011).
[2] Ahari A, Hsiao A, Baty G et al. Microstructure signature evolution in solder joints, solder bumps, and micro-bumps interconnection in a large 2.5D FCBGA package during thermo-mechanical cycling[C], 1099-1105(2019).
[3] Zhu Q S, Gao F, Ma H C et al. Failure behavior of flip chip solder joint under coupling condition of thermal cycling and electrical current[J]. Journal of Materials Science: Materials in Electronics, 29, 5025-5033(2018).
[4] Chin H S, Cheong K Y, Ismail A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical and Materials Transactions B, 41, 824-832(2010).
[5] Guo W, Zhang H Q, Zhang X Y et al. Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering[J]. Journal of Alloys and Compounds, 690, 86-94(2017).
[6] Wu Z J, Cai J, Wang J Q et al. Low-temperature Cu-Cu bonding using silver nanoparticles fabricated by physical vapor deposition[J]. Journal of Electronic Materials, 47, 988-993(2018).
[7] Wang S, Ji H J, Li M Y et al. Pressureless low temperature sintering of Ag nanoparticles applied to electronic packaging[J]. Electronics Process Technology, 33, 317-319(2012).
[8] Paknejad S A, Mannan S H. Review of silver nanoparticle based die attach materials for high power/temperature applications[J]. Microelectronics Reliability, 70, 1-11(2017).
[9] Li M, Xiao Y, Zhang Z et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces, 7, 9157-9168(2015).
[10] Yang J L, Dong C C, Luo J. Development of low-temperature sintered nanoscale silver for new power device packaging[J]. Materials Reports, 33, 360-364(2019).
[11] Guo W, Zeng Z, Zhang X Y et al. Low-temperature sintering bonding using silver nanoparticle paste for electronics packaging[J]. Journal of Nanomaterials, 2, 1-7(2015).
[12] Suganuma K, Sakamoto S, Kagami N et al. Low-temperature low-pressure die attach with hybrid silver particle paste[J]. Microelectronics Reliability, 52, 375-380(2012).
[13] Manikam V R, Cheong K Y. Die attach materials for high temperature applications: a review[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1, 457-478(2011).
[14] Zhang Y C, Yan J F, Zou G S et al. Low temperature sintering-bonding using mixed Cu+Ag nanoparticle paste for packaging application[J]. Transactions of the China Welding Institution, 34, 17-21, 114(2013).
[15] Zhang H, Nagao S, Suganuma K. Addition of SiC particles to Ag die-attach paste to improve high-temperature stability; grain growth kinetics of sintered porous Ag[J]. Journal of Electronic Materials, 44, 3896-3903(2015).
[16] Gillman A, Roelofs M J G H, Matouš K et al. Microstructure statistics-property relations of silver particle-based interconnects[J]. Materials & Design, 118, 304-313(2017).
[17] Yu F, Cui J Z, Zhou Z M et al. Reliability of Ag sintering for power semiconductor die attach in high-temperature applications[J]. IEEE Transactions on Power Electronics, 32, 7083-7095(2017).
[18] Siow K S. Mechanical properties of nano-silver joints as die attach materials[J]. Journal of Alloys and Compounds, 514, 6-19(2012).
[19] Wang T, Chen X, Lu G Q et al. Low-temperature sintering with nano-silver paste in die-attached interconnection[J]. Journal of Electronic Materials, 36, 1333-1340(2007).
[20] Khazaka R, Mendizabal L, Henry D. Review on joint shear strength of nano-silver paste and its long-term high temperature reliability[J]. Journal of Electronic Materials, 43, 2459-2466(2014).
[21] Liu J D, Chen H T, Ji H J et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles[J]. ACS Applied Materials & Interfaces, 8, 33289-33298(2016).
[22] Gawande M B, Goswami A, Felpin F X et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis[J]. Chemical Reviews, 116, 3722-3811(2016).
[23] Tian Y H, Jiang Z, Wang C X et al. Sintering mechanism of the Cu-Ag core-shell nanoparticle paste at low temperature in ambient air[J]. RSC Advances, 6, 91783-91790(2016).
[24] Yang W C, Wang S, Zhu W B et al. Preparation and connection performance analysis of solder paste by low-temperature sintering Cu nanoparticles[J]. Transactions of the China Welding Institution, 39, 72-76, 132(2018).
[25] Suganuma K, Jiu J T. Advanced bonding technology based on nano- and micro-metal pastes[M]. Lu D, Wong C P. Materials for advanced packaging, 589-626(2017).
[26] Schmitt W, Chew L M, Miller R. Pressure-less sintering on large dies using infrared radiation and optimized silver sinter paste[C], 539-544(2018).
[27] Zhang H Q, Zou G S, Liu L et al. Low temperature sintering of silver nanoparticle paste forelectronic packaging[C], 314-317(2016).
[28] Zhang H Q, Wang W G, Bai H L et al. Microstructural and mechanical evolution of silver sinteringdie attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 774, 487-494(2019).
[29] Heuck N, Müller S, Palm G et al. Swelling phenomena in sintered silver die attach structures at high temperatures: reliability problems and solutions for an operation above 350 ℃[J]. Additional Conferences, 2010, 18-25(2010).
[30] Deng Z Y, Jia Q, Feng B et al. Research progress on fabrication and applications of high-performance films by pulsed laser deposition[J]. Chinese Journal of Lasers, 48, 0802010(2021).
[31] Feng B, Shen D Z, Wang W G et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 11, 16972-16980(2019).
[32] Zubir N S M, Zhang H Q, Zou G S et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials, 48, 7562-7572(2019).
[33] Wang W G, Zou G S, Jia Q et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering: A, 793, 139894(2020).
[34] Wang W G, Jia Q et al. Microstructure and property evolutions of joints sintered by silver micro- and nano-particles composite film[J]. Chinese Journal of Lasers, 48, 0802015(2021).
[35] Jia Q, Wang W G et al. Low-temperature bonding of Ag-Pd nanoalloy and its resistance to electrochemical-migration[J]. Chinese Journal of Lasers, 48, 0802014(2021).
[36] Fang Z Z, Wang H. Densification and grain growth during sintering of nanosized particles[J]. International Materials Reviews, 53, 326-352(2008).
[37] Manikam V R, Razak K A, Cheong K Y. Sintering of silver-aluminum nanopaste with varying aluminum weight percent for use as a high-temperature Die-attach material[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 1940-1948(2012).
[38] Chua S T, Siow K S. Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 ℃[J]. Journal of Alloys and Compounds, 687, 486-498(2016).
Get Citation
Copy Citation Text
Yongchao Wu, Jintao Hu, Wei Guo, Lei Liu, Hui Kang, Peng Peng. Ultrafast Laser Patterning Deposition of Micron Sliver Bumps for Chip Bonding Application[J]. Chinese Journal of Lasers, 2022, 49(2): 0202002
Category: laser manufacturing
Received: Feb. 24, 2021
Accepted: May. 6, 2021
Published Online: Dec. 1, 2021
The Author Email: Peng Peng (ppeng@buaa.edu.cn)