Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 248(2023)
Development on Pre- Lithiation Applied in SiOx Anode of Lithium-Ion Battery
[1] [1] FENG K, LI M, LIU W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018,14(8): 1702737.
[2] [2] LIU Z, YU Q, ZHAO Y, et al. Silicon oxides: A promising family of anode materials for lithium-ion batteries[J]. Chem Soc Rev, 2019,48(1): 285-309.
[4] [4] CHEN T, WU J, ZHANG Q, et al. Recent advancement of SiOx based anodes for lithium-ion batteries[J]. J Power Sources, 2017, 363:126-144.
[5] [5] PAN K, ZOU F, CANOVA M, et al. Systematic electrochemical characterizations of Si and SiO anodes for high-capacity Li-Ion batteries[J]. J Power Sources, 2019, 413: 20-28.
[6] [6] KITADA K, PECHER O, MAGUSIN P C M M, et al. Unraveling the reaction mechanisms of SiO anodes for li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR Spectroscopy[J]. J Am Chem Soc, 2019, 141(17): 7014-7027.
[7] [7] YAMADA M, INABA A, UEDA A, et al. Reaction mechanism of “SiO”-carbon composite-negative electrode for high-capacity lithium-ion batteries[J]. J Electrochem Soc, 2012, 159(10):A1630-A1635.
[8] [8] KIM T, PARK S, OH S M. Solid-state NMR and electrochemical dilatometry study on Li[sup +] uptake/extraction mechanism in SiO electrode[J]. J Electrochem Soc, 2007, 154(12): A1112.
[9] [9] HOHL A, WIEDER T, VAN AKEN P A, et al. An interface clusters mixture model for the structure of amorphous silicon monoxide(SiO)[J]. J Non-Cryst Solids, 2003, 320(1): 255-280.
[11] [11] YANG F, WANG D, ZHAO Y, et al. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries[J]. Energy, 2018, 145: 486-495.
[12] [12] LI J-Y, XU Q, LI G, et al. Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries[J]. Mater Chem Front, 2017, 1(9): 1691-1708.
[13] [13] YAO Y-X, YAN C, ZHANG Q. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries[J]. Chem Commun, 2020,56(93): 14570-14584.
[15] [15] CHOI G, KIM J, KANG B. Understanding Limited Reversible Capacity of a SiO Electrode during the First Cycle and Its Effect on Initial Coulombic Efficiency[J]. Chem Mater, 2019, 31(16): 6097-6104.
[17] [17] RENMAN V, BLANCO M V, NORBERG A N, et al. Electrochemical activation of a diatom-derived SiO2/C composite anode and its implementation in a lithium ion battery[J]. Solid State Ionics, 2021,371: 115766.
[18] [18] LIU W-R, YEN Y-C, WU H-C, et al. Nano-porous SiO/carbon composite anode for lithium-ion batteries[J]. J Appl Electrochem, 2009,39(9): 1643-1649.
[19] [19] TAN T, LEE P-K, ZETTSU N, et al. Passivating oxygen atoms in SiO through pre-treatment with Na2CO3 to increase its first cycle efficiency for lithium-ion batteries[J]. Electrochim Acta, 2022, 404:139777.
[20] [20] ZHOU M, GORDIN M L, CHEN S, et al. Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries [J].Electrochem Commun, 2013, 28: 79-82.
[21] [21] ZHANG Y, GUO G, CHEN C, et al. An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes[J]. J Power Sources, 2019, 426: 116-123.
[22] [22] HOLTSTIEGE F, B?RMANN P, N?LLE R, et al. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts,Promises and Challenges[J]. Batteries, 2018, 4(1): 4.
[23] [23] DOMI Y, USUI H, IWANARI D, et al. Effect of mechanical Pre-lithiation on electrochemical performance of silicon negative electrode for lithium-ion batteries[J]. J Electrochem Soc, 2017, 164(7):A1651-A4.
[25] [25] ZHAO J, LEE H W, SUN J, et al. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility [J]. Proc Natl Acad Sci U S A, 2016, 113(27): 7408-7413.
[26] [26] JANG J, KANG I, CHOI J, et al. Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes[J]. Angew Chem (Int Ed), 2020, 59(34): 14473-14480.
[27] [27] UHLMANN C, ILLIG J, ENDER M, et al. In situ detection of lithium metal plating on graphite in experimental cells[J]. J Power Sources,2015, 279: 428-438.
[28] [28] LIU Q, DU C, SHEN B, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries[J]. RSC Adv, 2016, 6(91):88683-88700.
[29] [29] RODRIGUES M-T F, GILBERT J A, KALAGA K, et al. Insights on the cycling behavior of a highly-prelithiated silicon-graphite electrode in lithium-ion cells[J]. J Phys: Energy, 2020, 2(2): 024002.
[30] [30] SHEN C X, FU R S, XIA Y G, et al. New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide[J]. Rsc Adv, 2018, 8(26): 14473-14478.
[31] [31] KIM H J, CHOI S, LEE S J, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Lett, 2016, 16(1): 282-288.
[32] [32] SEONG I W, KIM K T, YOON W Y. Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell[J]. J Power Sources, 2009, 189(1): 511-514.
[33] [33] YUE X-Y, YAO Y-X, ZHANG J, et al. Unblocked electron channels enable efficient contact prelithiation for lithium-ion batteries[J]. Adv Mater, 2022, 34(15): 2110337.
[34] [34] HUANG B, HUANG T, WAN L, et al. Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder[J]. ACS Sustain Chem Eng,2021, 9(2): 648-657.
[35] [35] YANG X, WEN Z, XU X, et al. Nanosized silicon-based composite derived by in situ mechanochemical reduction for lithium ion batteries[J]. J Power Sources, 2007, 164(2): 880-884.
[36] [36] TAKEZAWA H, ITO S, YOSHIZAWA H, et al. Electrochemical properties of a SiOx film anode pre-lithiated by evaporation of metallic Li in Li-ion batteries[J]. Chem Lett, 2017, 46(9): 1365-1367.
[37] [37] HIRATA A, KOHARA S, ASADA T, et al. Atomic-scale disproportionation in amorphous silicon monoxide[J]. Nat Commun,2016, 7(1): 11591.
[38] [38] ZHAO J, LEE H W, SUN J, et al. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility[J]. Proc Natl Acad Sci U S A, 2016, 113(27): 7408-7413.
[39] [39] SHELLIKERI A, WATSON V G, ADAMS D L, et al. Pre-lithiation of carbon anodes using different lithium-sources[J]. ECS Transact, 2017,77(11): 293-303.
[40] [40] B?RMANN P, MOHRHARDT M, FRERICHS J E, et al. Mechanistic insights into the pre-lithiation of silicon/graphite negative electrodes in “dry state” and after electrolyte addition using passivated lithium metal powder[J]. Adv Energy Mater, 2021, 11(25): 2100925.
[41] [41] ZHAO H, WANG Z, LU P, et al. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design[J]. Nano Lett, 2014, 14(11): 6704-6710.
[42] [42] MENG Q H, LI G, YUE J P, et al. High-performance Lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy[J].ACS Appl Mater Interfaces, 2019, 11(35): 32062-32068.
[43] [43] TABUCHI T, YASUDA H, YAMACHI M. Li-doping process for LixSiO-negative active material synthesized by chemical method for lithium-ion cells[J]. J Power Sources, 2005, 146(1/2): 507-509.
[44] [44] YANG M Y, LI G, ZHANG J, et al. Enabling SiOx/C anode with High initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2020, 12(24): 27202-27209.
[45] [45] LUNCHEV A V, TAN K S, GRIMSDALE A C, et al. Electrical and electrochemical properties of lithium solvated electron solutions derived from 1,3,5-triphenylbenzenes[J]. New J Chem, 2018, 42(19):15678-15683.
[46] [46] LI Y, QIAN Y, ZHAO Y, et al. Revealing the interface-rectifying functions of a Li-cyanonaphthalene prelithiation system for SiO electrode[J]. Sci Bull, 2022, 67(6): 636-645.
[47] [47] NAGAO Y, SAKAGUCHI H, HONDA H, et al. Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering[J]. J Electrochem Soc, 2004, 151(10): A1572.
[48] [48] JIANG F, SUN Y, ZHANG K, et al. SiOx/C anodes with high initial coulombic efficiency through the synergy effect of pre-lithiation and fluoroethylene carbonate for lithium-ion batteries[J]. Electrochim Acta,2021, 398: 139315.
[49] [49] LEE J Y, LEE B, KIM N-W, et al. Effects of Li-sources on microstructure of metallurgically pre-lithiated SiOx for Li-ion battery’s anode[J]. J Korean Inst Electr Electr Mater Eng, 2019, 32(1): 78-85.
[50] [50] XIE L Z, LIU H, LIN S X, et al. Modified SiO hierarchical structure materials with improved initial coulombic efficiency for advanced lithium-ion battery anodes[J]. Rsc Adv, 2019, 9(20): 11369-11376.
[54] [54] CHUNG D J, YOUN D, KIM S, et al. Dehydrogenation-driven Li metal-free prelithiation for high initial efficiency SiO-based lithium storage materials[J]. Nano Energy, 2021, 89: 106378.
[55] [55] ZHU Y, HU W, ZHOU J, et al. Prelithiated surface oxide layer enabled high-performance si anode for lithium storage[J]. ACS Appl Mater Interfaces, 2019, 11(20): 18305-18312.
[56] [56] DUAN Y, PFEIFFER H, LI B, et al. CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: An Ab initio thermodynamic and experimental approach[J]. Physl Chem Chem Phys,2013, 15(32): 13538-13558.
[57] [57] SU Y-S, HSIAO K-C, SIREESHA P, et al. Lithium silicates in anode materials for li-ion and li metal batteries[J]. Batteries, 2022, 8(1): 2.
[58] [58] CHUNG D J, YOUN D, KIM J Y, et al. Topology optimized prelithiated sio anode materials for lithium-ion batteries[J]. Small 2022,18: 2202209.
[59] [59] JEONG W J, CHUNG D J, YOUN D, et al. Double-Buffer-Phase embedded Si/TiSi2/Li2SiO3 nanocomposite lithium storage materials by phase-selective reaction of SiO with metal hydrides[J]. Energy Storage Mater, 2022, 50: 740-750.
[60] [60] LIN X, DONG Y, LIU X, et al. In-situ pre-lithiated onion-like SiOC/C anode materials based on metallasilsesquioxanes for Li-ion batteries[J].Chem Eng J, 2022, 428: 132125.
[61] [61] XIE W, PANG C, HE P, et al. Improving the performance of silicon monoxide anodes via tuning a multiple pre-doping system: A first-principles study[J]. Phys Chem Chem Phys, 2022, 24(12):7405-7414.
Get Citation
Copy Citation Text
FANG Zili, LI Rong, LIU Zhikuan, YANG Ye. Development on Pre- Lithiation Applied in SiOx Anode of Lithium-Ion Battery[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 248
Category:
Received: May. 15, 2022
Accepted: --
Published Online: Mar. 10, 2023
The Author Email: