Chinese Journal of Lasers, Volume. 51, Issue 19, 1901011(2024)
Research Progress on Thulium‐Doped Silica Fibers for 2
[2] McComb T S, Sims R A, Willis C C C et al. Atmospheric transmission testing using a portable, tunable, high power thulium fiber laser system[C], 16-21(2010).
[5] Hettel W, Golba G, Morrill D et al. Compact, ultrastable, high repetition-rate 2 μm and 3 μm fiber laser for seeding mid-IR OPCPA[J]. Optics Express, 32, 4072-4080(2024).
[9] Janeczek M, Świderski J, Czerski A et al. Preliminary evaluation of thulium doped fiber laser in pig model of liver surgery[J]. BioMed Research International, 2018, 3275284(2018).
[10] Zhu D C, Hu Y Z, Zhou L W et al. Tm3+-doped fiber random laser based on fiber grating feedback technology[J]. Acta Photonica Sinica, 51, 1114001(2022).
[11] Yang Y S, Li D, Ji E C et al. Thulium-doped fiber laser and its applications in laser lithotripsy: progress and prospect[J]. Laser & Optoelectronics Progress, 60, 1500007(2023).
[12] Sincore A, Bodnar N, Bradford J et al. SBS threshold dependence on pulse duration in a 2053 nm single-mode fiber amplifier[J]. Journal of Lightwave Technology, 35, 4000-4003(2017).
[14] Agrawal G P. Nonlinear fiber optics[M]. Nonlinear science at the dawn of the 21st century, 542, 195-211(2007).
[16] Smith A V, Smith J J. Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm[J]. Optics Express, 24, 975-992(2016).
[17] Tao R M, Ma P F, Wang X L et al. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers[J]. Laser Physics, 26, 065103(2016).
[18] Han K, Ma Y X, Wang X L et al. Progress of high power Tm-doped fiber laser[J]. Laser & Optoelectronics Progress, 47, 101406(2010).
[21] Yang C. Research on thulium-doped all-fiber laser with large mode field[D](2018).
[22] Möller F, Lühder T, Yildiz B et al. Transverse mode instabilities in kW-class Tm-doped fiber amplifier[C], 26-30(2023).
[30] Ehrenreich T, Leveille R, Majid I et al. 1-kW, all-glass Tm∶fiber laser[J]. Proceedings of SPIE, 7580, 758016(2010).
[37] Anderson B M, Taliaferro A, Flores A S. Mode instability in kW-class thulium doped fiber amplifiers[J]. Proceedings of SPIE, 11981, 119810Y(2022).
[40] Peterka P, Faure B, Blanc W et al. Theoretical modelling of S-band thulium-doped silica fibre amplifiers[J]. Optical and Quantum Electronics, 36, 201-212(2004).
[44] Shardlow P C, Jain D, Parker R et al. Optimising Tm-doped silica fibres for high lasing efficiency[C]. CJ_, 14-3(2015).
[48] Bayya S S, Chin G D, Sanghera J S et al. Germanate glass as a window for high energy laser systems[J]. Optics Express, 14, 11687-11693(2006).
[51] Wen X, Tang G W, Wang J W et al. Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser[J]. Optics Express, 23, 7722-7731(2015).
[52] Peng Y P, Yuan X Q, Zhang J J et al. The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission[J]. Scientific Reports, 4, 5256(2014).
[53] Liu X Q, Wang X, Wang L F et al. Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber[J]. Materials Letters, 125, 12-14(2014).
[55] Khalid M, Usman M, Arshad I. Germanate glass for laser applications in ∼ 2.1 μm spectral region: a review[J]. Heliyon, 9, e13031(2023).
[56] Tang G W, Liang Z H, Huang W H et al. 4.3 GHz fundamental repetition rate passively mode-locked fiber laser using a silicate-clad heavily Tm3+-doped germanate core multimaterial fiber[J]. Optics Letters, 47, 682-685(2022).
[57] Wen X, Tang G W, Yang Q et al. Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser[J]. Scientific Reports, 6, 20344(2016).
[58] Tu L, Tang G W, Qian Q et al. Controllable structural tailoring for enhanced ∼2 µm emission in heavily Tm3+-doped germanate glasses[J]. Optics Letters, 46, 310-313(2021).
[59] Tang G W, Zhang D, Zhang F T et al. Structure and luminescence properties of Tm3+ doped barium gallo-germanate glass tailored by Lu2O3[J]. Journal of Luminescence, 257, 119771(2023).
[60] Slimen F B, Chen S X, Lousteau J et al. Highly efficient Tm3+ doped germanate large mode area single mode fiber laser[J]. Optical Materials Express, 9, 4115-4125(2019).
[61] Slimen F B, Ren Z Q, Ventura A et al. Highly-Tm3+ doped hexagonal clad germanate fiber and associated CPA system for 2 µm pulsed fiber lasers and amplifiers[C]. DC, 13-16(2020).
[62] Ren Z Q, ben Slimen F, Lousteau J et al. Compact chirped-pulse amplification systems based on highly Tm3+-doped germanate fiber[J]. Optics Letters, 46, 3013-3016(2021).
[63] Agger S D, Povlsen J H. Emission and absorption cross section of thulium doped silica fibers[J]. Optics Express, 14, 50-57(2006).
[64] Chen S X, Jung Y, Alam S U et al. Ultra-short wavelength operation of thulium-doped fiber amplifiers and lasers[J]. Optics Express, 27, 36699-36707(2019).
[65] Ramírez-Martínez N J, Núñez-Velázquez M, Umnikov A A et al. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD[J]. Optics Express, 27, 196-201(2019).
[68] Vařák P, Mrázek J, Blanc W et al. Preparation and properties of Tm-doped SiO2-ZrO2 phase separated optical fibers for use in fiber lasers[J]. Optical Materials Express, 10, 1383-1391(2020).
[72] Pearson L, Kim J W, Zhang Z et al. High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier[J]. Optics Express, 18, 1607-1612(2010).
[73] Grábner M, Švejkarová B, Aubrecht J et al. Analytical model of thulium-doped fiber laser pumped by two-for-one process[J]. Journal of Lightwave Technology, 42, 2938-2944(2024).
[75] Li M J, Chen X, Wang J et al. Al/Ge co-doped large mode area fiber with high SBS threshold[J]. Optics Express, 15, 8290-8299(2007).
[76] Dragic P D, Liu Y S, Ballato J et al. YAG-derived fiber for high-power narrow-linewidth fiber lasers[J]. Proceedings of SPIE, 8237, 82371E(2012).
[77] Michalska M, Honzatko P, Grzes P et al. Thulium-doped 1940- and 2034-nm fiber amplifiers: towards highly efficient, high-power all-fiber laser systems[J]. Journal of Lightwave Technology, 42, 339-346(2024).
[78] Dianov E M, Mashinsky V M. Germania-based core optical fibers[J]. Journal of Lightwave Technology, 23, 3500-3508(2005).
[80] Luo Y F, Wang Y D, Gu S Y et al. Effect of thulium doped fiber core uniformity on the properties of TDF and TDFL[J]. Optical Fiber & Electric Cable and Their Applications, 23-27, 38(2021).
[83] Frith G P, Lancaster D G. Power scalable and efficient 790-nm pumped Tm3+-doped fiber lasers[J]. Proceedings of SPIE, 6102, 610208(2006).
[86] Gausmann S, Faugas B, Bradford J et al. High concentration large-mode-area Tm-doped double-clad fiber for high efficiency operation[J]. Proceedings of SPIE, 12400, 124000L(2023).
[88] Simakov N, Hemming A V, Carter A et al. Design and experimental demonstration of a large pedestal thulium-doped fibre[J]. Optics Express, 23, 3126-3133(2015).
[89] Louot C, Motard A, Ibach T et al. Passive fiber with pedestal in a 213-W continuous wave monolithic Tm3+-doped fiber laser at 1.94 µm[C], 11-15(2022).
[92] Jain D, Sahu J K, Fleming S. Mode area scaling with ultra-high NA using M-type fibre for efficient high-power lasers around 2 µm[C]. DC, 13-16(2020).
[93] Barber M J, Shardlow P C, Barua P et al. Nested-ring doping for highly efficient 1907 nm short-wavelength cladding-pumped thulium fiber lasers[J]. Optics Letters, 45, 5542-5545(2020).
[94] Buckthorpe M P, Clarkson W A. Simple method for determining quantum efficiency and background propagation loss in thulium-doped fibres[J]. Applied Physics B, 129, 142(2023).
[95] Jauregui C, Limpert J, Tünnermann A. Ultra-large mode area fibers for high power lasers[C], 11-15(2018).
[96] Modsching N, Kadwani P, Sims R A et al. Lasing in thulium-doped polarizing photonic crystal fiber[J]. Optics Letters, 36, 3873-3875(2011).
[97] Heuermann T, Wang Z Y, Lenski M et al. 188 W average power coherently combined Tm-doped fiber laser system delivering ultrashort pulses with 1.86 mJ energy[J]. Proceedings of SPIE, 12400, 124000E(2023).
[98] Liang L B, Ju B, Long X Q et al. Fabrication and optical properties of Tm3+/Al3+ co-doped photonic crystal fiber based on CO2 laser sintering technology[J]. Journal of Non-Crystalline Solids, 522, 119590(2019).
[99] Peterka P, Aubrecht J, Pysz D et al. Development of pedestal-free large mode area fibers with Tm3+ doped silica nanostructured core[J]. Optics Express, 31, 43004-43016(2023).
[100] Jain D, Baskiotis C, Sahu J K. Mode area scaling with multi-trench rod-type fibers[J]. Optics Express, 21, 1448-1455(2013).
[102] Coscelli E, Molardi C, Masruri M et al. Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding[J]. Optics Express, 22, 9707-9714(2014).
[106] Cook J, Sincore A, Vail N et al. 100 W, tunable in-band thulium fiber amplifier pumped by incoherently combined 1.9 µm fiber lasers[J]. Optics Express, 31, 29245-29254(2023).
Get Citation
Copy Citation Text
Yaqian Ding, Ming Jia, Shaoyi Gu, Jiaxin Qiu, Guanghui Chen. Research Progress on Thulium‐Doped Silica Fibers for 2
Category: laser devices and laser physics
Received: Jun. 20, 2024
Accepted: Sep. 4, 2024
Published Online: Oct. 13, 2024
The Author Email: Ding Yaqian (Dyaqian@126.com)
CSTR:32183.14.CJL240990