Acta Optica Sinica, Volume. 44, Issue 1, 0106002(2024)
Advances in High-Performance Optical Frequency Domain Distributed Fiber Optical Measuring and Sensing Technology
[1] Hartog A H[M]. An introduction to distributed optical fiber sensors(2016).
[3] Liao Y B, Li M, Zhang M[M]. Optical fiber sensing techniques and applications(2009).
[4] Zhang X P[M]. Fully distributed optical fiber sensing technology(2013).
[5] Lopez-Higuera J M, Cobo L R, Incera A Q et al. Fiber optic sensors in structural health monitoring[J]. Journal of Lightwave Technology, 29, 587-608(2011).
[6] Nokes G. Optimising power transmission and distribution networks using optical fibre distributed temperature sensing systems[C], 4/1-4-9(2000).
[7] Glisic B, Yao Y. Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement[J]. Structural Health Monitoring, 11, 696-711(2012).
[8] Adachi S. Distributed optical fiber sensors and their applications[C], 329-333(2008).
[9] Sladen A, Rivet D, Ampuero J P et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables[J]. Nature Communications, 10, 5777(2019).
[10] Williams E F, Fernández-Ruiz M R, Magalhaes R et al. Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 10, 5778(2019).
[11] von der Weid J P, Passy R, Mussi G et al. On the characterization of optical fiber network components with optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 15, 1131-1141(1997).
[12] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 11, 1377-1384(1993).
[13] Soller B J, Gifford D K, Wolfe M S et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 13, 666-674(2005).
[14] Hu Z H, Wang B J, Wang L S et al. Improving spatial resolution of chaos OTDR using significant-bit correlation detection[J]. IEEE Photonics Technology Letters, 31, 1029-1032(2019).
[15] Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light: Science & Applications, 5, e16074(2016).
[16] Wang B, Fan X Y, Fu Y X et al. Enhancement of strain/temperature measurement range and spatial resolution in Brillouin optical correlation domain analysis based on convexity extraction algorithm[J]. IEEE Access, 7, 32128-32136(2019).
[17] He Z Y, Liu Q W. Optical fiber distributed acoustic sensors: a review[J]. Journal of Lightwave Technology, 39, 3671-3686(2021).
[18] Healey P. Optical time domain reflectometry: a performance comparison of the analogue and photon counting techniques[J]. Optical and Quantum Electronics, 16, 267-276(1984).
[19] Eickhoff W, Ulrich R. Optical frequency-domain reflectometry in single-mode fibers[C], WF3(1981).
[20] Youngquist R C, Carr S, Davies D E N. Optical coherence-domain reflectometry: a new optical evaluation technique[J]. Optics Letters, 12, 158-160(1987).
[21] Wang A B, Wang Y C. Chaos correlation optical time domain reflectometry[J]. Science China Information Sciences, 53, 398-404(2010).
[22] Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters[J]. Applied Optics, 46, 1968-1971(2007).
[23] Li J, Gan J L, Zhang Z S et al. High spatial resolution distributed fiber strain sensor based on phase-OFDR[J]. Optics Express, 25, 27913-27922(2017).
[24] Davé D P, Milner T E. Optical low-coherence reflectometer for differential phase measurement[J]. Optics Letters, 25, 227-229(2000).
[25] Wang S, Fan X Y, Liu Q W et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 23, 33301-33309(2015).
[26] Pastor-Graells J, Martins H F, Garcia-Ruiz A et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses[J]. Optics Express, 24, 13121-13133(2016).
[27] Nakazawa M, Tokuda M, Negishi Y. Measurement of polarization mode coupling along a polarization-maintaining optical fiber using a backscattering technique[J]. Optics Letters, 8, 546-548(1983).
[28] Larin K V, Akkin T, Esenaliev R O et al. Phase-sensitive optical low-coherence reflectometry for the detection of analyte concentrations[J]. Applied Optics, 43, 3408-3414(2004).
[29] Dakin J P, Pratt D J, Bibby G W et al. Temperature distribution measurement using Raman ratio thermometry[J]. Proceedings of SPIE, 0566, 249-256(1986).
[30] Geng J P, Xu J D, Li Y et al. The development of the model and arithmetic for the fully distributed fiber optic sensor based on Raman optical-fiber frequency-domain reflectometry (ROFDR)[J]. Sensors and Actuators A: Physical, 101, 132-136(2002).
[31] Li J, Wang C Y, Cao K Y et al. Breakthrough the physical barrier on spatial resolution in Raman distributed fiber sensing using chaotic correlation demodulation[J]. APL Photonics, 8, 076105(2023).
[32] Tsai S C, Huang M H, Chen Y K. Stimulated Raman scattering-induced baseband video distortion due to 1.65-μm OTDR online monitoring in 1.55-μm AM-VSB CATV system[J]. IEEE Photonics Technology Letters, 14, 1016-1018(2002).
[33] Shimizu K, Horiguchi T, Koyamada Y et al. Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers[J]. Journal of Lightwave Technology, 12, 730-736(1994).
[34] Minardo A, Bernini R, Ruiz-Lombera R et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 24, 29994-30001(2016).
[35] Mizuno Y, He Z Y, Hotate K. Enlargement of measurement range of Brillouin optical correlation-domain reflectometry based on temporal gating scheme[C](2008).
[36] Ma Z, Zhang M J, Liu Y et al. Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum[J]. IEEE Photonics Journal, 7, 6100407(2015).
[37] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers[J]. IEEE Photonics Technology Letters, 1, 107-108(1989).
[38] Garus D, Gogolla T, Krebber K et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 21, 1402-1404(1996).
[39] Song K Y, He Z Y, Hotate K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis and beat lock-in detection scheme[C], ThC2(2006).
[40] Wang Y H, Zhang M J, Zhang J Z et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 37, 3706-3712(2019).
[41] Huang Z J, Wu C Q, Wang Z et al. Distributed measurement of polarization mode coupling in fiber ring based on P-OTDR complete polarization state detection[J]. Optics Express, 26, 4798-4806(2018).
[42] Yu Z J, Zhuang Q Q, Lin Y et al. Optical frequency domain polarimetry for distributed polarization crosstalk measurement beyond a 110 dB dynamic range[J]. Optics Letters, 47, 4271-4274(2022).
[43] Takada K, Noda J, Okamoto K. Measurement of spatial distribution of mode coupling in birefringent polarization-maintaining fiber with new detection scheme[J]. Optics Letters, 11, 680-682(1986).
[44] Shelby R M, Levenson M D, Bayer P W. Resolved forward Brillouin scattering in optical fibers[J]. Physical Review Letters, 54, 939-942(1985).
[45] Chow D M, Soto M A, Thévenaz L. Frequency-domain technique to measure the inertial response of forward stimulated Brillouin scattering for acoustic impedance sensing[J]. Proceedings of SPIE, 10323, 1032311(2017).
[46] Song K Y, Zou W, He Z et al. All-optical dynamic grating generation based on Brillouin scattering in polarization maintaining fiber[J]. Optics Letters, 33, 926-928(2008).
[47] Marie T F B, Yang B, Han D Z et al. Principle and application state of fully distributed fiber optic vibration detection technology based on Φ-OTDR: a review[J]. IEEE Sensors Journal, 21, 16428-16442(2021).
[48] Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 15, 2112-2115(1976).
[49] Qin J, Zhang L, Xie W L et al. Ultra-long range optical frequency domain reflectometry using a coherence-enhanced highly linear frequency-swept fiber laser source[J]. Optics Express, 27, 19359-19368(2019).
[50] Qu S, Xu Y P, Huang S et al. Recent advancements in optical frequency-domain reflectometry: a review[J]. IEEE Sensors Journal, 23, 1707-1723(2023).
[51] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation[J]. Applied Optics, 44, 7630-7634(2005).
[52] Fan X Y, Ito F. Novel optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenatively generated reference signal[J]. Optics InfoBase Conference Papers, 32, 3227-3229(2007).
[53] Ding Z Y, Yao X S, Liu T G et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 21, 3826-3834(2013).
[54] Qin J, Zhou Q, Xie W L et al. Coherence enhancement of a chirped DFB laser for frequency-modulated continuous-wave reflectometry using a composite feedback loop[J]. Optics Letters, 40, 4500-4503(2015).
[55] Feng Y X, Xie W L, Meng Y X et al. High-performance optical frequency-domain reflectometry based on high-order optical phase-locking-assisted chirp optimization[J]. Journal of Lightwave Technology, 38, 6227-6236(2020).
[56] Zou C, Lin C F, Mou T L et al. Beyond a 107 range-resolution-1 product in an OFDR based on a periodic phase noise estimation method[J]. Optics Letters, 47, 5373-5376(2022).
[57] Galtarossa A, Grosso D, Palmieri L. Accurate characterization of twist-induced optical activity in single-mode fibers by means of polarization-sensitive reflectometry[J]. IEEE Photonics Technology Letters, 21, 1713-1715(2009).
[58] Galtarossa A, Palmieri L. Mapping of intense magnetic fields based on polarization sensitive reflectometry in single mode optical fibers[C](2014).
[59] Du Y, Jothibasu S, Zhuang Y Y et al. Rayleigh backscattering based macrobending single mode fiber for distributed refractive index sensing[J]. Sensors and Actuators B: Chemical, 248, 346-350(2017).
[60] Ding Z Y, Wang C H, Liu K et al. Distributed measurements of external force induced local birefringence in spun highly birefringent optical fibers using polarimetric OFDR[J]. Optics Express, 27, 951-964(2019).
[61] Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 37, 1735-1740(1998).
[62] Kreger S T, Gifford D K, Froggatt M E et al. High resolution distributed strain or temperature measurements in single- and multi-mode fiber using swept-wavelength interferometry[C], ThE42(2006).
[63] Li W H, Chen L, Bao X Y. Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry[J]. Optics Communications, 311, 26-32(2013).
[64] Ding Z Y, Wang C H, Liu K et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: a review[J]. Sensors, 18, 1072(2018).
[65] Zhu T Y, Lin C F, Yang J et al. Improve accuracy and measurement range of sensing in km-level OFDR using spectral splicing method[J]. Optics Express, 31, 20980-20993(2023).
[66] Yang J, Zou C, Lin C F et al. Noise compensation methods for optical fiber frequency sweeping interferometry: a review[J]. Journal of Lightwave Technology, 41, 4035-4050(2023).
[67] Gollub J N, Yurduseven O, Trofatter K P et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale[J]. Scientific Reports, 7, 42650(2017).
[68] Yurduseven O, Imani M F, Odabasi H et al. Resolution of the frequency diverse metamaterial aperture imager[J]. Progress in Electromagnetics Research, 150, 97-107(2015).
[69] Ayhan S, Scherr S, Bhutani A et al. Impact of frequency ramp nonlinearity, phase noise, and SNR on FMCW radar accuracy[J]. IEEE Transactions on Microwave Theory and Techniques, 64, 3290-3301(2016).
[70] Venkatesh S, Sorin W V. Phase noise considerations in coherent optical FMCW reflectometry[J]. Journal of Lightwave Technology, 11, 1694-1700(1993).
[71] Gorju G, Crozatier V, Lavielle V et al. Experimental investigation of deterministic and stochastic frequency noises of a rapidly frequency chirped laser[J]. The European Physical Journal Applied Physics, 30, 175-183(2005).
[72] Lin C F, Yang J, Yu Z J et al. Increased spurious-free dynamic range in frequency sweeping interferometry by suppression of parasitic amplitude modulation[J]. Journal of Lightwave Technology, 40, 7191-7199(2022).
[73] Song J, Li W H, Lu P et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 6, 6801408(2014).
[74] Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation[J]. Applied Optics, 46, 2394-2400(2007).
[75] Ding Z Y, Liu T G, Meng Z et al. Note: improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform[J]. The Review of Scientific Instruments, 83, 066110(2012).
[76] Xing J J, Zhang Y, Wang F et al. A method based on time-scale factor for correcting the nonlinear frequency sweeping in an OFDR system[J]. IEEE Photonics Journal, 11, 7101808(2019).
[77] Badar M, Lu P, Buric M et al. Integrated auxiliary interferometer for self-correction of nonlinear tuning in optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 38, 6097-6103(2020).
[78] Guo Z, Han G C, Yan J Z et al. Ultimate spatial resolution realisation in optical frequency domain reflectometry with equal frequency resampling[J]. Sensors, 21, 4632(2021).
[79] Yu Z J, Zhuang Q Q, Zhu T Y et al. Distributed polarization crosstalk measurement based on optical frequency domain polarimetry[C](2021).
[80] Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 26, 3287-3294(2008).
[81] Xie W L, Meng Y X, Feng Y X et al. Optical linear frequency sweep based on a mode-spacing swept comb and multi-loop phase-locking for FMCW interferometry[J]. Optics Express, 29, 604-614(2021).
[82] Meng Y X, Xie W L, Feng Y X et al. Dynamic range enhanced optical frequency domain reflectometry using dual-loop composite optical phase-locking[J]. IEEE Photonics Journal, 13, 7100307(2021).
[83] Fan X Y, Koshikiya Y, Ito F. Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR[J]. Optics Express, 19, 19122-19128(2011).
[84] Zhang Z P, Fan X Y, Wu M S et al. Phase-noise-compensated OFDR realized using hardware-adaptive algorithm for real-time processing[J]. Journal of Lightwave Technology, 37, 2634-2640(2019).
[85] Du Y, Liu T G, Ding Z Y et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal, 6, 7902811(2014).
[86] Zhang Z P, Fan X Y, He Z Y. Long-range distributed static strain sensing with <100 nano-strain resolution realized using OFDR[J]. Journal of Lightwave Technology, 37, 4590-4596(2019).
[87] Chen D, Liu Q W, He Z Y. 108-km distributed acoustic sensor with 220-pε/Hz strain resolution and 5-m spatial resolution[J]. Journal of Lightwave Technology, 37, 4462-4468(2019).
[88] Fernández-Ruiz M R, Costa L, Martins H F. Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology[J]. Sensors, 19, 4368(2019).
[89] Li H, Liu Q W, Chen D et al. Centimeter spatial resolution distributed temperature sensor based on polarization-sensitive optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 39, 2594-2602(2021).
[90] Pan H, Qu X H, Shi C Z et al. Precision evaluation method of measuring frequency modulated continuous wave laser distance[J]. Acta Physica Sinica, 67, 090201(2018).
[91] Costa L, Martins H F, Martín-López S et al. Fully distributed optical fiber strain sensor with 10-12 ε/Hz sensitivity[J]. Journal of Lightwave Technology, 37, 4487-4495(2019).
[92] Zhao S Y, Cui J W, Suo L J et al. Performance investigation of OFDR sensing system with a wide strain measurement range[J]. Journal of Lightwave Technology, 37, 3721-3727(2019).
[93] Lu Y L, Zhu T, Chen L et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 28, 3243-3249(2010).
[94] Koyamada Y, Imahama M, Kubota K et al. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR[J]. Journal of Lightwave Technology, 27, 1142-1146(2009).
[95] Ding Z Y, Yao X S, Liu T G et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals[J]. Optics Express, 20, 28319-28329(2012).
[96] Liu T G, Du Y, Ding Z Y et al. 40-km OFDR-based distributed disturbance optical fiber sensor[J]. IEEE Photonics Technology Letters, 28, 771-774(2016).
[97] Guo Z, Yan J Z, Han G C et al. High sensing accuracy realisation with millimetre/sub-millimetre resolution in optical frequency domain reflectometer[J]. Journal of Lightwave Technology, 40, 4050-4056(2022).
[98] Qu S, Wang Z Q, Qin Z G et al. Internet of things infrastructure based on fast, high spatial resolution, and wide measurement range distributed optic-fiber sensors[J]. IEEE Internet of Things Journal, 9, 2882-2889(2022).
[99] Li P F, Fu C L, Du B et al. High-spatial-resolution strain sensor based on distance compensation and image wavelet denoising method in OFDR[J]. Journal of Lightwave Technology, 39, 6334-6339(2021).
[100] Feng K P, Zu W L, Dang H et al. Robustness- and processing-rate-improved OFDR based on local search and Kalman prediction[J]. IEEE Photonics Technology Letters, 34, 1325-1328(2022).
[101] Feng K P, Cui J W, Jiang D et al. Improvement of the strain measurable range of an OFDR based on local similar characteristics of a Rayleigh scattering spectrum[J]. Optics Letters, 43, 3293-3296(2018).
[102] Suo L J, Lei Z K, Takezawa A et al. Reliability-guided Rayleigh backscattering spectrum correlation method for distributed strain measurements in optical fibres[J]. Journal of Modern Optics, 66, 512-520(2019).
[103] Wang C H, Liu K, Ding Z Y et al. GPU-based real-time distributed dynamic strain sensing in optical frequency domain reflectometry[J]. IEEE Sensors Journal, 21, 24166-24176(2021).
[104] Taylor H F, Lee C E. Apparatus and method for fiber optic intrusion sensing[P].
[105] He Z Y, Liu Q W. Principles and applications of optical fiber distributed acoustic sensors[J]. Laser & Optoelectronics Progress, 58, 1306001(2021).
[106] Pedraza A, del Río D, Bautista-Juzgado V et al. Study of the feasibility of decoupling temperature and strain from a ϕ-PA-OFDR over an SMF using neural networks[J]. Sensors, 23, 5515(2023).
[107] Wang C H, Liu K, Ding Z Y et al. High sensitivity distributed static strain sensing based on differential relative phase in optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 38, 5825-5836(2020).
[108] Liu J F, Li C, Fan X J et al. A method of phase demodulation of OFDR based on ARC-DSM algorithm[J]. Optoelectronics Letters, 18, 13-17(2022).
[109] Feng W, Wang M F, Jia H L et al. High precision phase-OFDR scheme based on fading noise suppression[J]. Journal of Lightwave Technology, 40, 900-908(2022).
[110] Meng Y J, Fu C L, Chen L et al. Submillimeter-spatial-resolution φ-OFDR strain sensor using femtosecond laser induced permanent scatters[J]. Optics Letters, 47, 6289-6292(2022).
[111] Zhang C, Bao Y, Cui T et al. Polarization independent phase-OFDR in Rayleigh-based distributed sensing[J]. Journal of Lightwave Technology, 41, 2518-2525(2023).
[112] Wang M F, Feng W, Xie K et al. Wide measurement range distributed strain sensing with phase-accumulation optical frequency domain reflectometry[J]. Journal of Lightwave Technology, 40, 5307-5315(2022).
[113] Chen D. Research on high performance optical fiber distributed acoustic wave sensing system based on time-gated digital optical frequency domain reflector[D](2022).
[114] Cheng Y Y, Luo M M, Liu J F et al. Numerical analysis and recursive compensation of position deviation for a sub-millimeter resolution OFDR[J]. Sensors, 20, 5540(2020).
[115] Wang Q R, Zhao K H, Badar M et al. Improving OFDR distributed fiber sensing by fibers with enhanced Rayleigh backscattering and image processing[J]. IEEE Sensors Journal, 22, 18471-18478(2022).
[116] Cui J W, Zhao S Y, Yang D et al. Investigation of the interpolation method to improve the distributed strain measurement accuracy in optical frequency domain reflectometry systems[J]. Applied Optics, 57, 1424-1431(2018).
[117] Zhao S Y, Cui J W, Wu Z J et al. Accuracy improvement in OFDR-based distributed sensing system by image processing[J]. Optics and Lasers in Engineering, 124, 105824(2020).
[118] Qu S, Qin Z G, Xu Y P et al. High spatial resolution investigation of OFDR based on image denoising methods[J]. IEEE Sensors Journal, 21, 18871-18876(2021).
[119] Pan M, Hua P D, Ding Z Y et al. Long distance distributed strain sensing in OFDR by BM3D-SAPCA image denoising[J]. Journal of Lightwave Technology, 40, 7952-7960(2022).
[120] Feng K P, Cui J W, Dang H et al. A OFDR signal processing method based on wavelet transform for improving its sensing performance[J]. IEEE Photonics Technology Letters, 31, 1108-1111(2019).
[121] Gifford D K, Soller B J, Wolfe M S et al. Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion[J]. Applied Optics, 44, 7282-7286(2005).
[122] Usman A, Zulkifli N, Salim M R et al. Optical link monitoring in fibre-to-the-x passive optical network (FTTx PON): a comprehensive survey[J]. Optical Switching and Networking, 39, 100596(2020).
[123] Asha’ari A F A, Bakar A AA, Naim N F. Design of optical frequency domain reflectometer (OFDR) interferometer based on fiber Bragg grating (FBG) for passive optical network (PON) monitoring[C](2018).
[124] Ohno S, Iida D, Toge K et al. Distributed spatial mode dispersion measurement along strongly coupled multicore fibre with C-OFDR[C](2018).
[125] Podschus J, Koeppel M, Schmauss B et al. Position measurement of multiple microparticles in hollow-core photonic crystal fiber by coherent optical frequency domain reflectometry[C], W1.2(2021).
[126] Chen S, Liu Z Y, Niu X C et al. The scattering characteristic analysis of various types of fiber used in FOCT through OFDR technology[J]. Proceedings of SPIE, 12321, 123210W(2022).
[127] Zhao D, Pustakhod D, Williams K et al. Characterization of distributed Bragg reflectors using optical frequency domain reflectometry[C](2018).
[128] Bru L A, Pastor D, Muñoz P. Integrated optical frequency domain reflectometry device for characterization of complex integrated devices[J]. Optics Express, 26, 30000-30008(2018).
[129] Tokushima M, Ushida J. Demonstration of in-depth analysis of silicon photonics circuits using OFDR: waveguides with grating couplers[J]. Optics Letters, 47, 162-165(2021).
[130] Kamata M, Baba T. OFDR analysis of Si photonics FMCW LiDAR chip[J]. Optics Express, 31, 25245-25252(2023).
[131] Fu C L, Peng Z W, Li P F et al. Research on distributed fiber temperature/strain/shape sensing based on OFDR[J]. Laser & Optoelectronics Progress, 60, 1106007(2023).
[132] Ma Q Q, Feng Z Y, Wang R H et al. Research on soil heat transfer with distributed optical fiber sensing for pipeline monitoring[J]. Acta Photonica Sinica, 52, 0606002(2023).
[133] Zhao Y D, Wang M G, Zhang J et al. Distributed optical fiber vibration sensing system with high spatial resolution and large bandwidth[J]. Acta Optica Sinica, 42, 1906004(2022).
[134] Shao C, Yin G L, Lv L et al. OFDR with local spectrum matching method for optical fiber shape sensing[J]. Applied Physics Express, 12, 082010(2019).
[135] Lally E M, Reaves M, Horrell E et al. Fiber optic shape sensing for monitoring of flexible structures[J]. Proceedings of SPIE, 8345, 83452Y(2012).
[136] Matsumoto H, Araki E, Kimura T et al. Detection of hydroacoustic signals on a fiber-optic submarine cable[J]. Scientific Reports, 11, 2797(2021).
[137] Ajo-Franklin J B, Dou S, Lindsey N J et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection[J]. Scientific Reports, 9, 1328(2019).
[138] Kishida K, Guzik A, Nishiguchi K et al. Development of real-time time gated digital (TGD) OFDR method and its performance verification[J]. Sensors, 21, 4865(2021).
[139] Badar M, Lu P, Wang Q R et al. Monitoring internal power transformer temperature using distributed optical fiber sensors[J]. Proceedings of SPIE, 11405, 114050F(2020).
[140] Zhu L Q, Sun G K, Bao W M et al. Structural deformation monitoring of flight vehicles based on optical fiber sensing technology: a review and future perspectives[J]. Engineering, 16, 39-55(2022).
[141] Coscetta A, Minardo A, Olivares L et al. Wind turbine blade monitoring with brillouin-based fiber-optic sensors[J]. Journal of Sensors, 2017, 9175342(2017).
[142] Dai J P, Qiu J B, Liu H R et al. High spatial resolution TGD-OFDR based on internally modulated DFB laser[J]. Acta Optica Sinica, 43, 0728001(2023).
[143] Pillon J, Louf F, Boiron H et al. Thermomechanical analysis of the effects of homogeneous thermal field induced in the sensing coil of a fiber-optic gyroscope[J]. Finite Elements in Analysis and Design, 212, 103826(2022).
Get Citation
Copy Citation Text
Jun Yang, Cuofu Lin, Chen Zou, Zhangjun Yu, Yuncai Wang, Yuwen Qin. Advances in High-Performance Optical Frequency Domain Distributed Fiber Optical Measuring and Sensing Technology[J]. Acta Optica Sinica, 2024, 44(1): 0106002
Category: Fiber Optics and Optical Communications
Received: Sep. 14, 2023
Accepted: Nov. 8, 2023
Published Online: Jan. 5, 2024
The Author Email: Yang Jun (yangj@gdut.edu.cn)
CSTR:32393.14.AOS231551