Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2237010(2024)
Fine-Grained Image Classification Based on Feature Fusion and Ensemble Learning
Fig. 1. Illustration of different mixup methods. (a) Input; (b) Cutout; (c) Mixup; (d) CutMix; (e) AGMix
Fig. 6. PR curves of different ablation methods. (a) CUB-200-2011; (b) Stanford Dogs; (c) NAbirds; (d) IP102
Fig. 7. Ablation results with different γ and η values. (a) CUB-200-2011; (b) Stanford Dogs; (c) NABirds; (d) IP102
Fig. 9. t-SNE visualization results on four datasets. (a) CUB-200-2011; (b) Stanford Dogs; (c) NABirds; (d) IP102
Fig. 10. Feature visualization results. (a) CUB-200-2011; (b) Stanford Dogs; (c) NABirds; (d) IP102
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Wenli Zhang, Wei Song. Fine-Grained Image Classification Based on Feature Fusion and Ensemble Learning[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2237010
Category: Digital Image Processing
Received: Feb. 28, 2024
Accepted: Apr. 11, 2024
Published Online: Nov. 19, 2024
The Author Email: Song Wei (songwei@jiangnan.edu.cn)
CSTR:32186.14.LOP240759