Journal of Inorganic Materials, Volume. 36, Issue 4, 339(2021)
[5] TONG C J, CHEN Y L, CHEN S K et al. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 36, 881-893(2005).
[6] ZHANG Y, ZUO T T, TANG Z et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 61, 1-93(2014).
[7] MURTY B S, YEH J W, RANGANATHAN S. High-entropy Alloys[J]. London: Elsevier(2014).
[8] ZHANG Y, ZUO T T, CHENG Y Q et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability[J]. Scientific Reports, 3, 1-7(2013).
[9] CHUANG M H, TSAI M H, WANG W R et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high entropy alloys[J]. Acta Materialia, 59, 6308-6317(2011).
[10] JIANG S C, HU T, GILD J et al. A new class of high-entropy perovskite oxides[J]. Scripta Materialia, 142, 116-120(2018).
[11] TSAI M H. Physical properties of high entropy alloys[J]. Entropy, 15, 5338-5345(2013).
[13] YEH J W. Recent progress in high-entropy alloys[J]. Annales De Chimie-Science des Materiaux, 31, 633-648(2006).
[14] MIRACLE D B. High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “nonlinear alloys”[J]. JOM, 69, 2130-2136(2017).
[15] ROST C M, SACHET E, BORMAN T et al. Entropy-stabilized oxides[J]. Nature Communications, 6, 8485(2015).
[16] CHELLALI M R, SARKAR A, NANDAM S H et al. On the homogeneity of high entropy oxides: an investigation at the atomic scale[J]. Scripta Materialia, 166, 58-63(2019).
[17] DJENADIC R, SARKAR A, CLEMENS O et al. Multicomponent equiatomic rare earth oxides[J]. Materials Research Letters, 5, 102-109(2017).
[18] DUPUY A D, WANG X, SCHOENUNG J M. Entropic phase transformation in nanocrystalline high entropy oxides[J]. Materials Research Letters, 7, 60-67(2019).
[20] YAN X L, CONSTANTIN L, LU Y F et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity[J]. Journal of the American Ceramic Society, 101, 4486-4491(2018).
[21] CHEN H, XIANG H M, DAI F Z et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C[J]. Journal of Materials Science & Technology, 35, 1700-1705(2019).
[22] CASTLE E, CSANADI T, GRASSO S et al. Processing and properties of high-entropy ultra-high temperature carbides[J]. Scientific Reports, 8, 8609(2018).
[24] YE B L, WEN T Q, NGUYEN M C et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics[J]. Acta Materialia, 170, 15-23(2019).
[25] HARRINGTON T J, GILD J, SARKER P et al. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Materialia, 166, 271-280(2019).
[26] YE B L, WEN T Q, HUANG K H et al. First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high- entropy ceramic[J]. Journal of the American Ceramic Society, 102, 4344-4352(2019).
[27] WANG K, CHEN L, XU C G et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic[J]. Journal of Materials Science & Technology, 39, 99-105(2020).
[28] ZHANG W, CHEN L, XU C G et al. Densification, microstructure and mechanical properties of multicomponent (TiZrHfNbTaMo)C ceramic prepared by pressureless sintering[J]. Journal of Materials Science & Technology, 72, 23-28(2021).
[29] JIN T, SANG X H, UNOCIC R R et al. Mechanochemical- assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Advanced Materials, 30, 1707512(2018).
[31] ZHAO Z F, XIANG H M, DAI F Z et al. (TiZrHf)P2O7: an equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity[J]. Journal of Materials Science & Technology, 35, 2227-2231(2019).
[32] LIU Y C, JIA D C, ZHOU Y et al. Zn0.1Ca0.1Sr0.4Ba0.4ZrO3: a non-equimolar multicomponent perovskite ceramic with low thermal conductivity[J]. Journal of the European Ceramic Society, 40, 6272-6277(2020).
[33] ZHU D M. Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composite Turbine Components[J]. Engineered Ceramics: Current Status and Future Prospects, Hoboken, New Jersey: John Wiley & Sons, Inc(2016).
[34] LEE K N, FOX D S, BANSAL N P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics[J]. Journal of the European Ceramic Society, 25, 1705-1715(2005).
[36] LUO Y X, SUN L C, WANG J M et al. Tunable thermal properties in yttrium silicates switched by anharmonicity of low-frequency phonons[J]. Journal of the European Ceramic Society, 38, 2043-2052(2018).
[37] POERSCHKE D L, HASS D D, EUSTIS S et al. Stability and CMAS resistance of ytterbium-silicate/hafnate EBCs/TBC for SiC composites[J]. Journal of the American Ceramic Society, 98, 278-286(2015).
[38] DONG Y, REN K, LU Y H et al. High-entropy environmental barrier coating for the ceramic matrix composites[J]. Journal of the European Ceramic Society, 39, 2574-2579(2019).
[39] CHEN H, XIANG H M, DAI F Z et al. High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion[J]. Journal of Materials Science & Technology, 36, 134-139(2020).
[40] REN X M, TIAN Z L, ZHANG J et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material[J]. Scripta Materialia, 168, 47-50(2019).
[41] RIDLEY M, GASKINS J, HOPKINS P et al. Tailoring thermal properties of multi-component rare earth monosilicates[J]. Acta Materialia, 195, 698-707(2020).
[42] TURCER L R, SENGUPTA A, PADTURE N P. Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings[J]. Scripta Materialia, 191, 40-45(2021).
[43] POERSCHKE D L, JACKSON R W, LEVI C G. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions[J]. Annual Review of Materials Research, 47, 297-330(2017).
[44] LIU J, ZHANG L T, LIU Q M et al. Calcium-magnesium- aluminosilicate corrosion behaviors of rare-earth disilicates at 1400 ℃[J]. Journal of the European Ceramic Society, 33, 3419-3428(2013).
[45] TIAN Z L, REN X M, LEI Y M et al. Corrosion of RE2Si2O7 (RE=Y, Yb, and Lu) environmental barrier coating materials by molten calcium-magnesium-alumino-silicate glass at high temperatures[J]. Journal of the European Ceramic Society, 39, 4245-4254(2019).
[46] TURCER L R, KRAUSE A R, GARCES H F et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part I, YAlO3 and γ-Y2Si2O7[J]. Journal of the European Ceramic Society, 38, 3905-3913(2018).
[47] TURCER L R, KRAUSE A R, GARCES H F et al. Environmental-barrier coating ceramics for resistance against attack by molten calcia-magnesia-aluminosilicate (CMAS) glass: Part II, β-Yb2Si2O7 and β-Sc2Si2O7[J]. Journal of the European Ceramic Society, 38, 3914-3924(2018).
[48] SUN L C, LUO Y X, TIAN Z L et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium- aluminosilicate (CMAS)[J]. Corrosion Science, 175, 108881(2020).
[49] FELSCHE J. The Crystal Chemistry of the Rare-earth Silicates[J]. Rare Earths. Structure and Bonding, Vol 13. Berlin, Heidelberg: Springer(1973).
[50] SUN L C, LUO Y X, REN X M et al. A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability[J]. Materials Research Letters, 8, 424-430(2020).
Get Citation
Copy Citation Text
Luchao SUN, Xiaomin REN, Tiefeng DU, Yixiu LUO, Jie ZHANG, Jingyang WANG.
Category: REVIEW
Received: Oct. 27, 2020
Accepted: --
Published Online: Nov. 24, 2021
The Author Email: Jingyang WANG (jywang@imr.ac.cn)