Acta Photonica Sinica, Volume. 51, Issue 9, 0914002(2022)
Ultra-thin Photonic Crystal Mirror for Vertical-cavity Surface-emitting Lasers
[1] WANG Fengling, CHEN Lei, ZHANG Qiubo et al. Design of high contrast subwavelength gratings with GaAs-based VCSEL materials[J]. Journal of Infrared and Millimeter Waves, 39, 19-24(2020).
[2] HUANG M C Y, ZHOU Y, CHANG-HASNAIN C J et al. A surface-emitting laser incorporating a high-index-contrast subwavelength grating[J]. Nature Photonics, 1, 297-297(2007).
[3] LI Xiushan, NING Yongqiang, ZHANG Xing et al. Influence of grating parameters on reflectivity of Si/SiO2 high contrast gratings[J]. Chinese Journal of Luminescence, 36, 806-810(2015).
[4] WANG Baoqiang, XU Chen, LIU Yingming et al. Study on current spreading of photonic crystal vertical cavity surface emitting lasers[J]. Chinese Journal of Physics, 59, 8542-8547(2010).
[5] ITOH Y, KONO N, FUJIWARA N et al. Continous-wave lasing operation of 1.3-μm wavelength InP-based photonic crystal surface-emitting lasers using MOVPE regrowth[J]. Optics Express, 28, 35483(2020).
[6] YOSHIDA M, ZOYSA M D, ISHIZAKI K et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 18, 121-128(2019).
[7] DE ZOYSA M, YOSHIDA M, KAWASAKI M et al. Photonic crystal lasers fabricated by MOVPE based on organic arsenic source[J]. IEEE Photonics Technology Letters, 29, 1739-1742(2017).
[8] YOSHIDA M, KAWASAKI M, DE ZOYSA M et al. Fabrication of photonic crystal structures by tertiary-butyl arsine-based metal–organic vapor-phase epitaxy for photonic crystal lasers[J]. Applied Physics Express, 9, 062702(2016).
[9] REILLY K J, KALAPALA A, YEOM S et al. Epitaxial regrowth and hole shape engineering for photonic crystal surface emitting lasers (PCSELs)[J]. Journal of Crystal Growth, 535, 125531(2020).
[10] DEMEULENAERE B, BIENSTMAN P, DHOEDT B et al. Detailed study of AlAs-oxidized apertures in VCSEL cavities foroptimized modal performance[J]. IEEE Journal of Quantum Electronics, 35, 358-367(1999).
[11] HAN Xiaoming, YANG Dexing, ZHAO Jianlin et al. Thermal effect in high-power Yb3+-doped photonic crystal fiber lasers[J]. Chinese Journal of Lasers, 36, 2822-2826(2009).
[12] NAKWASKI W. Thermal conductivity of binary, ternary, and quaternary III-V compounds[J]. Journal of Applied Physics, 64, 159-166(1988).
[13] OSINSKI M, NAKWASKI W. Effective thermal conductivity analysis of 1.55 μm InGaAsP/InP vertical-cavity top-surface-emitting microlasers[J]. Electronics Letters, 11, 1015-1016(1993).
[14] LEE H K, SONG Y M, LEE Y T et al. Thermal analysis of asymmetric intracavity-contacted oxide-aperture VCSELs for efficient heat dissipation[J]. Solid-State Electronics, 53, 1086-1091(2009).
[15] LI Hui, JIA Xiaowei, WEI Zekun et al. Thermal analysis and structure optimization of high-speed optical communication-VCSEL[J]. Chinese Journal of Luminescence, 38, 1516-1522(2017).
Get Citation
Copy Citation Text
Haijing WANG, Jun WANG, Jiachen LI, Chunyang XIAO, Yanxing JIA, Rui MING, Bojie MA, Zhuoliang LIU, Kai LIU, Yiming BAI, Yongqing HUANG, Xiaomin REN. Ultra-thin Photonic Crystal Mirror for Vertical-cavity Surface-emitting Lasers[J]. Acta Photonica Sinica, 2022, 51(9): 0914002
Category:
Received: Mar. 10, 2022
Accepted: Apr. 29, 2022
Published Online: Oct. 26, 2022
The Author Email: Haijing WANG (whj0910@bupt.edu.cn)