Journal of Synthetic Crystals, Volume. 52, Issue 2, 196(2023)
Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT
[8] [8] BRADFORD B H. CdZnTe arrays for nuclear medicine imaging[J]. Health Sciences Ctr/Univ of Arizona, 1996, 2859:26-28.
[9] [9] GAO X Y. Large-area CdZnTe thick film based array X-ray detector[J]. Vacuum, 2021, 183: 109855.
[10] [10] KE S Y, LIN S M, MAO D F, et al. Design of wafer-bonded structures for near room temperature Geiger-mode operation of germanium on silicon single-photon avalanche photodiode[J]. Applied Optics, 2017, 56(16): 4646-4653.
[13] [13] LUKE P N, AMMAN M, LEE J S. Factors affecting energy resolution of coplanar-grid CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1199-1203.
[21] [21] LEE M, LEE D, JO B, et al. Feasibility study of contrast enhanced digital mammography based on photon-counting detector by projection-based weighting technique: a simulation study[C]//SPIE Medical Imaging. Proc SPIE 10573, Medical Imaging 2018: Physics of Medical Imaging, Houston, Texas, USA. 2018, 10573: 1262-1272.
[22] [22] MSC A K, ZARETSKY PHD U, MOALEM I, et al. A new cardiac phantom for dynamic SPECT[J]. Journal of Nuclear Cardiology, 2021, 28(5): 2299-2309.
[23] [23] LEE Y. Preliminary evaluation of dual-head Compton camera with Si/CZT material for breast cancer detection: Monte Carlo simulation study[J]. Optik, 2020, 202: 163519.
[25] [25] CUDDY-WALSH S G, WELLS R G. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera[J]. Medical Physics, 2018, 45(5): 2033-2047.
[26] [26] ITO T, MATSUSAKA Y, ONOGUCHI M, et al. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator[J]. Journal of Applied Clinical Medical Physics, 2021, 22(2): 165-177.
[28] [28] BEN-HAIM S, KENNEDY J, KEIDAR Z. Novel cadmium zinc telluride devices for myocardial perfusion imaging-technological aspects and clinical applications[J]. Seminars in Nuclear Medicine, 2016, 46(4): 273-285.
[29] [29] CHEN Y, CUI Y, O′CONNOR P, et al. Test of a 32-channel prototype ASIC for photon counting application[C]∥IEEE Nuclear Science Symposium Conference Record Nuclear Science Symposium, 2015, 2015: 10.1109/NSSMIC.2015.7582272.
[30] [30] SCHWANK J, BROWN D, GIRARD S, et al. 2012 special NSREC issue of the IEEE transactions on nuclear science comments by the editors[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 2632.
[31] [31] KURKOWSKA S, BIRKENFELD B, PIWOWARSKA-BILSKA H. Physical quantities useful for quality control of quantitative SPECT/CT imaging[J]. Nuclear Medicine Review Central & Eastern Europe, 2021, 24(2): 93-98.
[32] [32] FLEETWOOD D, BROWN D, GIRARD S, et al. 2013 special NSREC issue of the IEEE transactions on nuclear science comments by the editors[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4042.
[33] [33] GLASSER F, VILLARD P, ROSTAING J P, et al. Large dynamic range 64-channel ASIC for CZT or CdTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 509(1/2/3): 183-190.
[34] [34] XU L Y, JIE W Q, ZHA G Q, et al. Radiation damage on CdZnTe: In crystals under high dose 60Co γ-rays[J]. CrystEngComm, 2013, 15(47): 10304-10310.
[35] [35] GAO W. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 745: 57-62.
[36] [36] GAO W, LI X, LIU H, et al. Design and performance of a 16-channel radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager[J]. Microelectronics Journal, 2016, 48: 87-94.
[37] [37] ZANNONI E M. Development of a multi-detector readout circuitry for ultrahigh energy resolution single-photon imaging applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 981: 164531.
[38] [38] JONES L. HEXITEC ASIC-a pixellated readout chip for CZT detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604(1/2): 34-37.
[41] [41] SONG J S, LEE J M, SOHN J Y, et al. Hybrid iterative reconstruction technique for liver CT scans for image noise reduction and image quality improvement: evaluation of the optimal iterative reconstruction strengths[J]. La Radiologia Medica, 2015, 120(3): 259-267.
[42] [42] LENG S, YU L F, WANG J, et al. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy Bin selection[J]. Medical Physics, 2011, 38(9): 4946-4957.
[43] [43] LEE Y H, PARK K K, SONG H T, et al. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software[J]. European Radiology, 2012, 22(6): 1331-1340.
[44] [44] HOKAMP N G, NEUHAUS V, ABDULLAYEV N, et al. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms[J]. Skeletal Radiology, 2018, 47(2): 195-201.
[45] [45] KHAN T M, BAILEY D G, KHAN M A U, et al. Efficient hardware implementation for fingerprint image enhancement using anisotropic Gaussian filter[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2116-2126.
[46] [46] SERIZEL R, MOONEN M, VAN DIJK B, et al. Low-rank approximation based multichannel Wiener filter algorithms for noise reduction with application in cochlear implants[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 785-799.
[47] [47] LIU Y K. Noise reduction by vector Median filtering[J]. GEOPHYSICS, 2013, 78(3): V79-V87.
[48] [48] CHEN Z L, ZENG Z Y, SHEN H L, et al. DN-GAN: denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images[J]. Biomedical Signal Processing and Control, 2020, 55: 101632.
[49] [49] HIGAKI T, NAKAMURA Y, TATSUGAMI F, et al. Improvement of image quality at CT and MRI using deep learning[J]. Japanese Journal of Radiology, 2019, 37(1): 73-80.
[50] [50] AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning-A new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18.
[51] [51] ZUNAIR H. Sharp U-Net: depthwise convolutional network for biomedical image segmentation[J]. Computers in Biology and Medicine, 2021, 136: 104699.
[52] [52] CHEN X C, ZHOU B, XIE H D, et al. Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49(9): 3046-3060.
[53] [53] BUTTACAVOLI A, GERARDI G, PRINCIPATO F, et al. Energy recovery of multiple charge sharing events in room temperature semiconductor pixel detectors[J]. Sensors, 2021, 21(11): 3669.
[54] [54] ABBENE L, GERARDI G, PRINCIPATO F, et al. Dual-polarity pulse processing and analysis for charge-loss correction in cadmium-zinc-telluride pixel detectors[J]. Journal of Synchrotron Radiation, 2018, 25(4): 1078-1092.
[55] [55] COSTANTINO A, BIRD A J, SCHUFFHAM J, et al. A back-projection approach to coded aperture imaging for SPECT applications[C]//SPIE Medical Imaging. Proc SPIE 12031, Medical Imaging 2022: Physics of Medical Imaging, San Diego, California, USA. 2022, 12031: 819-828.
[56] [56] PHD J O, MSC E M, JONAS JGI MD P, et al. Differences in attenuation pattern in myocardial SPECT between CZT and conventional gamma cameras[J]. Journal of Nuclear Cardiology, 2019, 26(6): 1984-1991.
[57] [57] SASAKI M, KOYAMA S, KODERA Y, et al. Identification of breast tissue using the X-ray image measured with an energy-resolved cadmium telluride series detector based on photon-counting technique[C]//Proc SPIE 10718, 2018, 10718: 525-530.
[58] [58] WU D W, ZHANG Z Y, MA R Z, et al. Comparison of CZT SPECT and conventional SPECT for assessment of contractile function, mechanical synchrony and myocardial scar in patients with heart failure[J]. Journal of Nuclear Cardiology, 2019, 26(2): 443-452.
[59] [59] JOHNSON R D, BATH N K, RINKER J, et al. Introduction to the D-SPECT for technologists: workflow using a dedicated digital cardiac camera[J]. Journal of Nuclear Medicine Technology, 2020, 48(4): 297-303.
[60] [60] BEN-HAIM S, MURTHY V L, BREAULT C, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study[J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 2013, 54(6): 873-879.
[63] [63] ARVIDSSON I, OVERGAARD N C, DAVIDSSON A, et al. Detection of left bundle branch block and obstructive coronary artery disease from myocardial perfusion scintigraphy using deep neural networks[C]//SPIE Medical Imaging. Proc SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, Online Only. 2021, 11597: 154-160.
[64] [64] MELKI S, CHAWKI M B, MARIE P Y, et al. Augmented planar bone scintigraphy obtained from a whole-body SPECT recording of less than 20 min with a high-sensitivity 360° CZT camera[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47(5): 1329-1331.
[65] [65] DESMONTS C, BOUTHIBA M A, ENILORAC B, et al. Evaluation of a new multipurpose whole-body CZT-based camera: comparison with a dual-head Anger camera and first clinical images[J]. EJNMMI Physics, 2020, 7(1): 18.
[66] [66] ACHRAF B, ANTOINE V, ALAIN B, et al. Absolute quantification of bone scintigraphy for the longitudinal monitoring of vertebral fractures with a high-speed whole-body CZT-SPECT/CT system[J]. Research Square, 2022.
[67] [67] MAZESS R B, HANSON J A, PAYNE R, et al. Axial and total-body bone densitometry using a narrow-angle fan-beam[J]. Osteoporosis International, 2000, 11(2): 158-166.
[68] [68] YAMANE T, KONDO A, TAKAHASHI M, et al. Ultrafast bone scintigraphy scan for detecting bone metastasis using a CZT whole-body gamma camera[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(8): 1672-1677.
[69] [69] HUH Y, YANG J, DIM O U, et al. Evaluation of a variable-aperture full-ring SPECT system using large-area pixelated CZT modules: a simulation study for brain SPECT applications[J]. Medical Physics, 2021, 48(5): 2301-2314.
[70] [70] BORDONNE M, CHAWKI M B, MARIE P Y, et al. High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera[J]. EJNMMI Physics, 2020, 7(1): 65.
[71] [71] BANI SADR A, TESTART N, TYLSKI P, et al. Reduced scan time in 123I-FP-CIT SPECT imaging using a large-field cadmium-zinc-telluride camera[J]. Clinical Nuclear Medicine, 2019, 44(7): 568-569.
Get Citation
Copy Citation Text
WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT[J]. Journal of Synthetic Crystals, 2023, 52(2): 196
Category:
Received: Oct. 24, 2022
Accepted: --
Published Online: Mar. 18, 2023
The Author Email: Zhonghang WU (wuzh@sumhs.edu.cn)
CSTR:32186.14.