Photonics Research, Volume. 10, Issue 7, 1787(2022)

Experimental demonstration of robust nanophotonic devices optimized by topological inverse design with energy constraint

Guowu Zhang1、*, Dan-Xia Xu2, Yuri Grinberg2, and Odile Liboiron-Ladouceur1
Author Affiliations
  • 1Department of Electrical and Computer Engineering, McGill University, Montréal, Quebec H3A 0E9, Canada
  • 2National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
  • show less
    References(53)

    [1] J. Lu, J. Vučković. Nanophotonic computational design. Opt. Express, 21, 13351-13367(2013).

    [2] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vučković. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 9, 374-377(2015).

    [3] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, A. W. Rodriguez. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [4] D. Melati, Y. Grinberg, M. K. Dezfouli, S. Janz, P. Cheben, J. H. Schmid, D. X. Xu. Mapping the global design space of nanophotonic components using machine learning pattern recognition. Nat. Commun., 10, 4775(2019).

    [5] A. Y. Piggott, E. Y. Ma, L. Su, G. H. Ahn, N. V. Sapra, D. Vercruysse, J. Vuckovic. Inverse-designed photonics for semiconductor foundries. ACS Photon., 7, 569-575(2020).

    [6] L. Su, D. Vercruysse, J. Skarda, N. V. Sapra, J. A. Petykiewicz, J. Vučković. Nanophotonic inverse design with SPINS: software architecture and practical considerations. Appl. Phys. Rev., 7, 011407(2020).

    [7] B. Shen, P. Wang, R. Polson, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4  μm2 footprint. Nat. Photonics, 9, 378-382(2015).

    [8] W. Chang, S. Xu, M. Cheng, D. Liu, M. Zhang. Inverse design of a single-step-etched ultracompact silicon polarization rotator. Opt. Express, 28, 28343-28351(2020).

    [9] M. P. Bendsoe, O. Sigmund. Topology Optimization: Theory, Methods, and Applications(2013).

    [10] J. S. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 5, 308-321(2011).

    [11] S. Yang, H. Jia, L. Zhang, J. Dai, X. Fu, T. Zhou, G. Zhang, L. Yang. Gradient-probability-driven discrete search algorithm for on-chip photonics inverse design. Opt. Express, 29, 28751-28766(2021).

    [12] L. Cheng, S. Mao, Z. Chen, Y. Wang, C. Zhao, H. Y. Fu. Ultra-compact dual-mode mode-size converter for silicon photonic few-mode fiber interfaces. Opt. Express, 29, 33728-33740(2021).

    [13] N. Zhao, S. Boutami, S. Fan. Efficient method for accelerating line searches in adjoint optimization of photonic devices by combining Schur complement domain decomposition and Born series expansions. Opt. Express, 30, 6413-6424(2022).

    [14] S. Boutami, N. Zhao, S. Fan. Determining the optimal learning rate in gradient-based electromagnetic optimization using the Shanks transformation in the Lippmann–Schwinger formalism. Opt. Lett., 45, 595-598(2020).

    [15] N. Zhao, S. Boutami, S. Fan. Accelerating adjoint variable method based photonic optimization with Schur complement domain decomposition. Opt. Express, 27, 20711-20719(2019).

    [16] Y. Zhang, S. Yang, A. E. J. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express, 21, 1310-1316(2013).

    [17] P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, J. Martí. Highly efficient crossing structure for silicon-on-insulator waveguides. Opt. Lett., 34, 2760-2762(2009).

    [18] Y. Zhang, S. Yang, E. J. Lim, G. Lo, T. Baehr-Jones, M. Hochberg. A CMOS-compatible, low-loss and low-crosstalk silicon waveguide crossing. IEEE Photon. Technol. Lett., 25, 422-425(2013).

    [19] P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, O. Sigmund. Topology optimization and fabrication of photonic crystal structures. Opt. Express, 12, 1996-2001(2004).

    [20] J. S. Jensen, O. Sigmund. Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl. Phys. Lett., 84, 2022-2024(2004).

    [21] M. Gerken, D. A. Miller. Multilayer thin-film structures with high spatial dispersion. Appl. Opt., 42, 1330-1345(2003).

    [22] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, E. Yablonovitch. Adjoint shape optimization applied to electromagnetic design. Opt. Express, 21, 21693-21701(2013).

    [23] O. D. Miller. Photonic design: from fundamental solar cell physics to computational inverse design(2012).

    [24] A. Y. Piggott, J. Petykiewicz, L. Su, J. Vučković. Fabrication-constrained nanophotonic inverse design. Sci. Rep., 7, 1786(2017).

    [25] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, J. Vučković. Analytical level set fabrication constraints for inverse design. Sci. Rep., 9, 8999(2019).

    [26] N. V. Sapra, D. Vercruysse, L. Su, K. Y. Yang, J. Skarda, A. Y. Piggott, J. Vučković. Inverse design and demonstration of broadband grating couplers. IEEE J. Sel. Top. Quantum Electron., 25, 6100207(2019).

    [27] L. F. Frellsen, Y. Ding, O. Sigmund, L. H. Frandsen. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt. Express, 24, 16866-16873(2016).

    [28] J. L. P. Ruiz, A. A. Amad, L. H. Gabrielli, A. A. Novotny. Optimization of the electromagnetic scattering problem based on the topological derivative method. Opt. Express, 27, 33586-33605(2019).

    [29] J. Huang, J. Yang, D. Chen, X. He, Y. Han, J. Zhang, Z. Zhang. Ultra-compact broadband polarization beam splitter with strong expansibility. Photon. Res., 6, 574-578(2018).

    [30] Y. Augenstein, C. Rockstuhl. Inverse design of nanophotonic devices with structural integrity. ACS Photon., 7, 2190-2196(2020).

    [31] F. Wang, B. S. Lazarov, O. Sigmund. On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim., 43, 767-784(2011).

    [32] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, J. Vuckovic. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. ACS Photon., 5, 301-305(2018).

    [33] O. Sigmund. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim., 33, 401-424(2007).

    [34] S. Boutami, S. Fan. Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson’s equation in a Green’s function formalism. Part I. Implementation with the method of discrete dipole approximation. J. Opt. Soc. Am. B, 36, 2378-2386(2019).

    [35] S. Boutami, S. Fan. Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson’s equation in a Green’s function formalism. Part II. Implementation using standard electromagnetic solvers. J. Opt. Soc. Am. B, 36, 2387-2394(2019).

    [36] S. Boutami, K. Hassan, C. Dupré, L. Baud, S. Fan. Experimental demonstration of silicon photonic devices optimized by a flexible and deterministic pixel-by-pixel technique. Appl. Phys. Lett., 117, 071104(2020).

    [37] E. Khoram, X. Qian, M. Yuan, Z. Yu. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces. Opt. Express, 28, 7060-7069(2020).

    [38] M. Zhou, B. S. Lazarov, F. Wang, O. Sigmund. Minimum length scale in topology optimization by geometric constraints. Comp. Methods Appl. Mech. Eng., 293, 266-282(2015).

    [39] M. Schevenels, B. S. Lazarov, O. Sigmund. Robust topology optimization accounting for spatially varying manufacturing errors. Comp. Methods Appl. Mech. Eng., 200, 3613-3627(2011).

    [40] G. Zhang, D.-X. Xu, Y. Grinberg, O. Liboiron-Ladouceur. Topological inverse design of nanophotonic devices with energy constraint. Opt. Express, 29, 12681-12695(2021).

    [41] G. Zhang, O. Liboiron-Ladouceur. Scalable and low crosstalk silicon mode exchanger for mode division multiplexing system enabled by inverse design. IEEE Photon. J., 13, 6601013(2021).

    [42] H. Jia, T. Zhou, X. Fu, J. Ding, L. Yang. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photon., 5, 1833-1838(2018).

    [43] A. Michael, E. Yablonovitch. Leveraging continuous material averaging for inverse electromagnetic design. Opt. Express, 26, 31717-31737(2018).

    [45] J. Jhoja, Z. Lu, J. Pond, L. Chrostowski. Efficient layout-aware statistical analysis for photonic integrated circuits. Opt. Express, 28, 7799-7816(2020).

    [47] T. V. Vaerenbergh, P. Sun, S. Hooten, M. Jain, Q. Wilmart, A. Seyedi, R. Beausoleil. Wafer-level testing of inverse-designed and adjoint-inspired vertical grating coupler designs compatible with DUV lithography. Opt. Express, 29, 37021-37036(2021).

    [48] O. Sigmund, K. Maute. Topology optimization approaches. Struct. Multidisc. Optim., 48, 1031-1055(2013).

    [49] J. P. Groen, C. R. Thomsen, O. Sigmund. Multi-scale topology optimization for stiffness and de-homogenization using implicit geometry modeling. Struct. Multidiscip. Optim., 63, 2919-2934(2021).

    [50] K. Svanberg. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim., 12, 555-573(2002).

    Tools

    Get Citation

    Copy Citation Text

    Guowu Zhang, Dan-Xia Xu, Yuri Grinberg, Odile Liboiron-Ladouceur, "Experimental demonstration of robust nanophotonic devices optimized by topological inverse design with energy constraint," Photonics Res. 10, 1787 (2022)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Silicon Photonics

    Received: Feb. 25, 2022

    Accepted: May. 13, 2022

    Published Online: Jun. 30, 2022

    The Author Email: Guowu Zhang (guowu.zhang@mail.mcgill.ca)

    DOI:10.1364/PRJ.457066

    Topics