Laser & Optoelectronics Progress, Volume. 55, Issue 2, 021503(2018)
Joint Detection of RGB-D Images Based on Double Flow Convolutional Neural Network
[1] Cui B. Significant object detection based on RGB-D information[D]. Tianjin: Tianjin University, 17-26(2014).
[2] Gupta S, Girshick R, Arbeláez P et al. Learning rich features from RGB-D images for object detection and segmentation[C]. European Conference on Computer Vision, 8695, 345-360(2014).
[3] Couprie C, Farabet C, Najman Let al. Indoor semantic segmentation using depth information [J]. 3572v2(1301).
[4] Gupta S, Arbelaez P, Malik J. Perceptual organization and recognition of indoor scenes from RGB-D images[C]. IEEE Computer Vision and Pattern Recognition, 564-571(2013).
[5] Eitel A, Springenberg J T, Spinello L. et al. Multimodal deep learning for robust RGB-D object recognition[C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, 681-687(2015).
[6] Rui T, Fei J C, Zhou Y et al. Pedestrian detection based on deep convolutional neural network[J]. Computer Engineering and Application, 52, 163-168(2016).
[7] Lu H T, Zhang Q C. Overview of application of depth convolutional neural network in computer vision[J]. Data Acquisition and Processing, 31, 1-17(2016).
[8] Song S, Xiao J X. Deep sliding shapes for amodal 3D object detection in RGB-D images[C]. IEEE Conference on Computer Vision and Pattern Recognition, 808-816(2016).
[9] Tu S Q, Xue Y J, Liang Y et al. RGB-D image classification methods[J]. Laser & Optoelectronics Progress, 53, 060003(2016).
[10] Lu L F, Xie Z J, Ye H W. Object recognition algorithm based on RGB-D feature and depth feature fusion[J]. Computer Engineering, 42, 187-192(2015).
[11] Zhang J, Li X. Handwritten character recognition based on TensorFlow platform[J]. Computer Knowledge, 12, 199-201(2016).
[12] Zhang W. Design and implementation of intelligent home system based on machinelearning[D]. Jilin: Jilin University, 25-37(2016).
[13] Lai K, Bo L, Ren X et al. A large-scale hierarchical multi-view RGB-D object dataset[C]. IEEE International Conference on Robotics and Automation, 1817-1824(2011).
[14] Mao N, Yang D D, Yang F C et al. Adaptive target tracking based on hierarchical convolution[J]. Laser & Optoelectronics Progress, 53, 121501(2016).
[15] Jia Y, Shelhamer E, Donahue J et al. Caffe: Convolutional architecture for fast feature embedding[C]. ACM International Conference on Multimedia, 675-678(2014).
[16] Cai Q, Wei L W, Li H S et al. Target detection of RGB-D images based on ANNet networks[J]. Journal of Systems Simulation, 28, 2260-2266(2016).
Get Citation
Copy Citation Text
fan Liu, Pengyuan Liu, Junning Zhang, Binbin Xu. Joint Detection of RGB-D Images Based on Double Flow Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(2): 021503
Category: Machine Vision
Received: Jul. 7, 2017
Accepted: --
Published Online: Sep. 10, 2018
The Author Email: Pengyuan Liu (lpy_jx@sina.com)