Journal of Applied Optics, Volume. 46, Issue 2, 327(2025)

PSMNet algorithm based on dual three-pooling attention mechanism

Tengfei LIU... Dongyun LIN*, Weiyao LAN and Yuehang CHEN |Show fewer author(s)
Author Affiliations
  • School of Aerospace Engineering, Xiamen University, Xiamen 361102, China
  • show less
    Figures & Tables(15)
    Flow chart of PSMNet-ECSA
    Structure diagram of PSMNet-ECSA network
    Structure diagram of channel attention
    Structure diagram of spatial attention
    Disparity map comparison of SceneFlow dataset
    Disparity map comparison of KITTI2015 dataset
    Left and right stereo images, and left disparity map
    Abalone three-dimensional reconstruction point cloud model
    • Table 1. Structure parameters of PSMNet-ECSA network

      View table
      View in Article

      Table 1. Structure parameters of PSMNet-ECSA network

      结构参数设置输出维度
      输入H×W×3
      双重三池化注意力
      conv0_x[3×3]×3,3212H×12W×32
      conv1_x[3×3,1283×3,128]×16,dila=214H×14W×128
      ca[maxpool,avgpool,mixpool], gamma=2, b=114H×14W×128
      sa[maxpool,avgpool,mixpool], k=314H×14W×128
      空间金字塔池化
      branch_x[64,32,16,8] pool, 3×3,32, 双线性插值14H×14W×32
      concat[conv1_2,conv1_4,branch_1, branch_2,branch_3,branch_4]14H×14W×320
      fusion3×3,1281×1,3214H×14W×32
      代价体
      左右特征级联14D×14H×14W×64
      3D 堆叠卷积
      3Dconv03×3×3,323×3×3,3214D×14H×14W×32
      3Dstack1_x[conv3×3×3,64deconv3×3×3,32]×414D×14H×14W×32
      output_x[3×3×3,323×3×3,1]×314D×14H×14W×1
      output[output_1,output_2,output_3]
      上采样双线性插值D×H×W
      视差回归H×W
    • Table 2. SceneFlow training parameters

      View table
      View in Article

      Table 2. SceneFlow training parameters

      参数类型参数值
      训练周期/epoch10
      训练时间/h6
      训练批次大小6
      测试批次大小4
      梯度下降优化器Adam(β1=0.9,β2=0.999
      固定学习率0.001
      最大视差192
    • Table 3. Ablation experiment results of SceneFlow dataset

      View table
      View in Article

      Table 3. Ablation experiment results of SceneFlow dataset

      算法类型模块结构端点 误差
      通道注意力空间注意力
      平均 池化最大 池化混合 池化平均 池化最大 池化混合 池化
      MASTER1.466
      CA1.435
      SA1.428
      AVG1.397
      MAX1.425
      MIX1.381
      CSA1.375
      ECSA1.349
    • Table 4. Comparison of accuracy on SceneFlow test set

      View table
      View in Article

      Table 4. Comparison of accuracy on SceneFlow test set

      算法EPE
      PSMNet-ECSA1.349
      DeepPruner1.673
      GCNet2.424
    • Table 5. KITTI2015 training parameters

      View table
      View in Article

      Table 5. KITTI2015 training parameters

      参数类型参数值
      训练周期/epoch300
      训练时间/h5
      训练批次大小6
      测试批次大小4
      初始学习率(前200个周期)0.001
      后期学习率(后100个周期)0.0001
      最大视差/pixel192
    • Table 6. Ablation experiment results of KITTI2015 dataset

      View table
      View in Article

      Table 6. Ablation experiment results of KITTI2015 dataset

      注意力 类型模块结构3px-Err/%
      通道注意力空间注意力
      平均 池化最大 池化混合 池化平均 池化最大 池化混合 池化
      MASTER2.304
      CSA2.160
      MIX1.933
      ECSA1.917
    • Table 7. Comparison of point cloud reconstruction accuracy for abalone

      View table
      View in Article

      Table 7. Comparison of point cloud reconstruction accuracy for abalone

      图像类型长度宽度呼吸孔12呼吸孔23呼吸孔34
      E582真实值/mm9467151316
      PSMNet-MASTER测量值/相对误差/(mm/%)91.2/3.064.4/3.913.8/8.014.2/9.216.8/5.0
      PSMNet-ECSA测量值/相对误差/(mm/%)92.9/1.265.5/2.214.2/5.312.6/3.115.5/3.1
      0524真实值/mm79551112
      PSMNet-MASTER测量值/相对误差/(mm/%)76.6/3.052.9/3.810.1/8.211.3/5.8
      PSMNet-ECSA测量值/相对误差/(mm/%)77.6/1.853.5/2.710.5/4.511.8/1.7
    Tools

    Get Citation

    Copy Citation Text

    Tengfei LIU, Dongyun LIN, Weiyao LAN, Yuehang CHEN. PSMNet algorithm based on dual three-pooling attention mechanism[J]. Journal of Applied Optics, 2025, 46(2): 327

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 1, 2024

    Accepted: --

    Published Online: May. 13, 2025

    The Author Email: LIN Dongyun (林冬云)

    DOI:10.5768/JAO202546.0202005

    Topics