Laser & Optoelectronics Progress, Volume. 56, Issue 4, 041004(2019)

Backscattered Light Repairing Method for Underwater Laser Image Based on Improved Generative Adversarial Network

Qingbo Zhang*, Xiaohui Zhang, and Hongwei Han
Author Affiliations
  • College of Weaponry Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China
  • show less
    Figures & Tables(14)
    Network structure of the GAN
    Schematic of training set. (a) Sample image; (b) image with backscattered light; (c) image with mixed noise
    Analysis of dilated convolution
    Analysis of jumping network
    Curve of model training
    Processing results of noise parameter (0, 20 dB, 0.01). (a) Target image; (b) image to be repaired; (c) Denoise+DCP; (d) Denoise+HEMSRCR; (e) proposed method
    Processing results of noise parameter (0, 25 dB, 0.015). (a) Target image; (b) image to be repaired; (c) Denoise+DCP; (d) Denoise+HEMSRCR; (e) proposed method
    Processing results of noise parameter (0, 30 dB, 0.02). (a) Target image; (b) image to be repaired; (c) Denoise+DCP; (d) Denoise+HEMSRCR; (e) proposed method
    • Table 1. Detailed configuration information of the generator networkpixel

      View table

      Table 1. Detailed configuration information of the generator networkpixel

      NameKernel sizeStrideDilation rateOutput sizeBNDropout
      input---256×256×1--
      conv1…conv2conv364×3×3128×3×31211256×256×64128×128×128PP--
      conv4128×3×311128×128×128P-
      conv5256×3×32164×64×256P-
      conv6…conv7dilaconv8256×3×3256×3×3111264×64×25664×64×256PP--
      dilaconv9256×3×31464×64×256P-
      dilaconv10256×3×31864×64×256P-
      dilaconv11256×3×311664×64×256P-
      conv12…conv13256×3×31164×64×256P-
      transconv14128×4×42-128×128×128P-
      merge1(conv4 + transconv14)---128×128×256-P
      conv15128×3×311128×128×128P-
      transconv1664×4×421256×256×64P-
      merge2(conv2 + transconv16)---256×256×128-P
      conv1732×3×311256×256×32P-
      output1×3×311256×256×1--
    • Table 2. Detailed configuration information of the discriminator networkpixel

      View table

      Table 2. Detailed configuration information of the discriminator networkpixel

      NameKernel sizeStrideDilation rateOutput sizeBNDropout
      Input---256×256×1--
      Conv1Conv264×5×5128×5×52211128×128×6464×64×128PP--
      Conv3256×5×52132×32×256P-
      Conv4512×5×52116×16×512P-
      Conv5512×5×5218×8×512P-
      Conv6512×5×5214×4×512P-
      FC---1--
    • Table 3. Structure of data set

      View table

      Table 3. Structure of data set

      ItemTrain setValidation setTest set
      Number ofimages5850650404040
      Size /(pixel×pixel)256×256256×256256×256512×512960×960
    • Table 4. The PSNR of different test imagesdB

      View table

      Table 4. The PSNR of different test imagesdB

      ImageDenoiseDenoise+DCPDenoise+ HEMSRCRProposed method
      Lv1Lv2Lv3Lv1Lv2Lv3Lv1Lv2Lv3Lv1Lv2Lv3
      116.9416.9616.9010.6710.7510.746.056.076.0622.6122.3121.50
      214.7814.8014.768.608.678.695.935.965.9821.9719.1421.15
      311.8611.9311.984.554.574.615.515.525.5117.3820.6518.24
      413.4013.4513.476.927.067.095.675.705.7118.5218.6417.81
      512.3312.3612.395.615.745.775.565.575.5910.4010.279.50
      615.1115.1415.188.658.768.845.845.885.8920.7217.2420.49
    • Table 5. The FSIM of different test imagesdB

      View table

      Table 5. The FSIM of different test imagesdB

      ImageDenoiseDenoise+DCPDenoise+ HEMSRCRProposed method
      Lv1Lv2Lv3Lv1Lv2Lv3Lv1Lv2Lv3Lv1Lv2Lv3
      10.910.910.910.900.910.910.590.580.530.930.920.92
      20.880.880.890.880.880.890.610.600.57.900.910.90
      30.920.910.900.900.910.920.650.620.550.920.910.91
      40.870.870.880.870.870.880.610.590.560.920.890.89
      50.890.890.900.890.890.900.680.660.600.910.890.88
      60.890.890.900.890.890.900.600.590.550.930.910.91
    • Table 6. Time of different methods

      View table

      Table 6. Time of different methods

      Image size (pixel×pixel)DenoiseDenoise+DCPDenoise+HEMSRCRProposed methodSpeed up
      256×2560.32270.33110.61520.04609.20×
      512×5121.48411.50592.34530.25616.94×
      960×9605.60275.68549.56820.410916.91×
    Tools

    Get Citation

    Copy Citation Text

    Qingbo Zhang, Xiaohui Zhang, Hongwei Han. Backscattered Light Repairing Method for Underwater Laser Image Based on Improved Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 23, 2018

    Accepted: Sep. 6, 2018

    Published Online: Jul. 31, 2019

    The Author Email: Qingbo Zhang (527992400@qq.com)

    DOI:10.3788/LOP56.041004

    Topics