Chinese Journal of Lasers, Volume. 51, Issue 4, 0402301(2024)

Anisotropy in Microstructure and Mechanical Properties of Pure Zinc Fabricated by Laser Additive Manufacturing (Invited)

Yanzhe Zhao, Zhi Dong, Di Wang, Changhui Song, Yongqiang Yang, and Changjun Han*
Author Affiliations
  • School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, Guangdong , China
  • show less
    References(37)

    [1] Zhao D L, Yu K D, Sun T F et al. Material-structure-function integrated additive manufacturing of degradable metallic bone implants for load-bearing applications[J]. Advanced Functional Materials, 33, 2213128(2023).

    [2] Gao C D, Yao X, Deng Y W et al. Laser-beam powder bed fusion followed by annealing with stress: a promising route for magnetostrictive improvement of polycrystalline Fe81Ga19 alloys[J]. Additive Manufacturing, 68, 103516(2023).

    [3] Chen X H, Chang R, Liu H T et al. Moving research direction in the field of metallic bioresorbable stents-a mini-review[J]. Bioactive Materials, 24, 20-25(2023).

    [4] Ling C R, Li Q, Zhang Z et al. Influence of heat treatment on microstructure, mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion[J]. International Journal of Extreme Manufacturing, 6, 015001(2024).

    [5] Shuai C J, Zhong S W, Shuai Y et al. Accelerated anode and cathode reaction due to direct electron uptake and consumption by manganese dioxide and titanium dioxide composite cathode in degradation of iron composite[J]. Journal of Colloid and Interface Science, 632, 95-107(2023).

    [6] Zhao D L, Han C J, Peng B et al. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold[J]. Acta Biomaterialia, 153, 614-629(2022).

    [7] Kabir H, Munir K, Wen C E et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives[J]. Bioactive Materials, 6, 836-879(2021).

    [8] Vojtěch D, Kubásek J, Šerák J et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomaterialia, 7, 3515-3522(2011).

    [9] Zheng Y F, Xia D D, Shen Y N et al. Additively manufactured biodegrabable metal implants[J]. Acta Metallurgica Sinica, 57, 1499-1520(2021).

    [10] Yin B Z, Qin Y, Wen P et al. Laser powder bed fusion for fabrication of metal orthopedic implants[J]. Chinese Journal of Lasers, 47, 1100001(2020).

    [11] Zhang Y, Lei J Z, Dan Z H et al. Combinatorial effects of the recipes of the initial gas-atomized powder sizes on microstructure and passivation characteristics of the SLM-ed Ti-6Al-4V bulk alloys[J]. Materials Science, 29, 176-185(2023).

    [12] Zhou R S, Wei K W, Liang J J et al. Basic process of new directional solidification nickel-based superalloy fabricated by laser powder bed fusion[J]. Chinese Journal of Lasers, 50, 2402304(2023).

    [13] Shuai C J, Dong Z, He C X et al. A peritectic phase refines the microstructure and enhances Zn implants[J]. Journal of Materials Research and Technology, 9, 2623-2634(2020).

    [14] Montani M, Demir A G, Mostaed E et al. Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing[J]. Rapid Prototyping Journal, 23, 514-523(2017).

    [15] Wang C Z, Hu Y L, Zhong C et al. Microstructural evolution and mechanical properties of pure Zn fabricated by selective laser melting[J]. Materials Science and Engineering: A, 846, 143276(2022).

    [16] Yang M L, Yang L, Peng S P et al. Laser additive manufacturing of zinc: formation quality, texture, and cell behavior[J]. Bio-Design and Manufacturing, 6, 103-120(2023).

    [17] Lietaert K, Zadpoor A A, Sonnaert M et al. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications[J]. Acta Biomaterialia, 110, 289-302(2020).

    [18] Qin Y, Wen P, Xia D D et al. Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn[J]. Additive Manufacturing, 33, 101134(2020).

    [19] Li H, Zhang J X, Lu B H. Forming quality and mechanical properties of TiC-particle-reinforced Inconel 718 composites produced by laser powder bed fusion[J]. Chinese Journal of Lasers, 50, 0802307(2023).

    [20] Thijs L, Sistiaga M L M, Wauthle R et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum[J]. Acta Materialia, 61, 4657-4668(2013).

    [21] Gao C, Wu W, Shi J et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting[J]. Additive Manufacturing, 34, 101378(2020).

    [22] Shuai C J, Zhong S W, Dong Z et al. Peritectic-eutectic transformation of intermetallic in Zn alloy: effects of Mn on the microstructure, strength and ductility[J]. Materials Characterization, 190, 112054(2022).

    [23] Bang G B, Kim W R, Kim H K et al. Effect of process parameters for selective laser melting with SUS316L on mechanical and microstructural properties with variation in chemical composition[J]. Materials & Design, 197, 109221(2021).

    [24] Shen M Y, Xie Y, Li J K et al. Influence of laser power on microstructure and properties of overlap region in dual-laser powder bed fusion of GH3536 superalloy[J]. Chinese Journal of Lasers, 50, 2402301(2023).

    [25] Wei F X, Cheng B S, Chew L T et al. Grain distribution characteristics and effect of diverse size distribution on the Hall-Petch relationship for additively manufactured metal alloys[J]. Journal of Materials Research and Technology, 20, 4130-4136(2022).

    [26] Ren J K, Yan D, Chen J et al. Effect of QT treatment on microstructure and obdurability of a B-Nb low carbon bainite steel[J]. Journal of Northeastern University (Natural Science), 40, 1561-1567(2019).

    [27] Wen S F, Chen K Y, Li W et al. Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties[J]. Materials & Design, 175, 107811(2019).

    [28] Liu X W, Sun J K, Zhou F Y et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J]. Materials & Design, 94, 95-104(2016).

    [29] Kafri A, Ovadia S, Goldman J et al. The suitability of Zn-1.3%Fe alloy as a biodegradable implant material[J]. Metals, 8, 153(2018).

    [30] Tong X, Zhang D C, Zhang X T et al. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials[J]. Acta Biomaterialia, 82, 197-204(2018).

    [31] Li H F, Xie X H, Zheng Y F et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Scientific Reports, 5, 10719(2015).

    [32] Shuai C J, Dong Z, Yang W J et al. Rivet-inspired modification of carbon nanotubes by in situ-reduced Ag nanoparticles to enhance the strength and ductility of Zn implants[J]. ACS Biomaterials Science & Engineering, 7, 5484-5496(2021).

    [33] Yang Y W, Yang M L, He C X et al. Rare earth improves strength and creep resistance of additively manufactured Zn implants[J]. Composites Part B: Engineering, 216, 108882(2021).

    [34] Yang Y, Cheng Y, Yang M et al. Semicoherent strengthens graphene/zinc scaffolds[J]. Materials Today Nano, 17, 100163(2022).

    [35] Wen P, Voshage M, Jauer L et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: processing, formation quality and mechanical properties[J]. Materials & Design, 155, 36-45(2018).

    [36] Kubásek J, Vojtěch D, Jablonská E et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J]. Materials Science and Engineering: C, 58, 24-35(2016).

    [37] Li G N, Yang H T, Zheng Y F et al. Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility[J]. Acta Biomaterialia, 97, 23-45(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yanzhe Zhao, Zhi Dong, Di Wang, Changhui Song, Yongqiang Yang, Changjun Han. Anisotropy in Microstructure and Mechanical Properties of Pure Zinc Fabricated by Laser Additive Manufacturing (Invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 0402301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Dec. 18, 2023

    Accepted: Jan. 17, 2024

    Published Online: Feb. 19, 2024

    The Author Email: Han Changjun (cjhan@scut.edu.cn)

    DOI:10.3788/CJL231539

    CSTR:32183.14.CJL231539

    Topics