Acta Optica Sinica, Volume. 44, Issue 9, 0928002(2024)

Plasmonic Fiber Grating Sensors for Ultra-Trace Mercury Ion Detection

Fang Wang1、*, Lanqi Lian1, Mengdi Lu2, and Yang Zhang2
Author Affiliations
  • 1School of Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030600, Shanxi , China
  • 2School of Physics, Dalian University of Technology, Dalian 116024, Liaoning , China
  • show less
    References(28)

    [1] Wan S X, Wang J D. Toxicity and harm of mercury to human nerves[J]. Studies of Trace Elements and Health, 22, 67-69(2005).

    [2] Cariccio V L, Samà A, Bramanti P et al. Mercury involvement in neuronal damage and in neurodegenerative diseases[J]. Biological Trace Element Research, 187, 341-356(2019).

    [3] Yu J G. Status quo of China mercury emission control and development trend[J]. Chemical Industry, 28, 40-42(2010).

    [4] Hu J F, Li Y Q, Gao G W et al. Research progress in heavy metal detection technologies in water[J]. Sensor World, 23, 7-15(2017).

    [5] Zhang J Y, Wan Z T, Wei Y X et al. The research progress of fluorescence probes for mercury ion[J]. Shandong Chemical Industry, 47, 48-50(2018).

    [6] Tong L M, Xu H X. Surface plasmons: mechanisms, applications and perspectives[J]. Physics, 41, 582-588(2012).

    [7] Chen B Y, Zhu Q F, Gao N et al. Properties of surface plasmon coupling based on far-field spectroscopy[J]. Laser & Optoelectronics Progress, 60, 2325001(2023).

    [8] Wang B Q, Yu P, Wang W H et al. High-Q plasmonic resonances: fundamentals and applications[J]. Advanced Optical Materials, 9, 2001520(2021).

    [9] Wang F. Investigation of tilted fiber Bragg grating surface plasmon resonance characteristics and biochemical sensing technology[D](2021).

    [10] Gui L L, Feng M Y, Liao X L et al. Research progresses and applications of chiral metasurfaces[J]. Laser & Optoelectronics Progress, 60, 0500001(2023).

    [11] Caucheteur C, Guo T, Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection[J]. Analytical and Bioanalytical Chemistry, 407, 3883-3897(2015).

    [12] Chen S M, Liu C, Liu Y et al. Label-free near-infrared plasmonic sensing technique for DNA detection at ultralow concentrations[J]. Advanced Science, 7, 2000763(2020).

    [13] Lao J J, Sun P, Liu F et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage[J]. Light, Science & Applications, 7, 34(2018).

    [14] Jia S, Bian C, Sun J Z et al. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury (II) ion by gold nanoparticles-DNA conjugates[J]. Biosensors & Bioelectronics, 114, 15-21(2018).

    [15] Duan Y F, Wang F, Zhang X P et al. TFBG-SPR DNA-biosensor for renewable ultra-trace detection of mercury ions[J]. Journal of Lightwave Technology, 39, 3903-3910(2021).

    [16] Wang F, Zhang Y, Lu M D et al. Near-infrared band Gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor[J]. Sensors and Actuators B: Chemical, 337, 129816(2021).

    [17] Guo T, Liu F, Shao L Y. Tilted fiber Bragg grating sensors[J]. Journal of Applied Sciences, 36, 75-103(2018).

    [18] Li X L, Zhao H Y, Wu W J et al. Graphene oxide modified tilted fiber Bragg grating for 10-12 level heavy metal ion sensing[J]. Acta Physica Sinica, 71, 050702(2022).

    [19] Kim H M, Uh M, Jeong D H et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber[J]. Sensors and Actuators B: Chemical, 280, 183-191(2019).

    [20] Huang M Q, Xiong E H, Wang Y et al. Fast microwave heating-based one-step synthesis of DNA and RNA modified gold nanoparticles[J]. Nature Communications, 13, 968(2022).

    [21] Guo W F, Zhang C X, Ma T T et al. Advances in aptamer screening and aptasensors' detection of heavy metal ions[J]. Journal of Nanobiotechnology, 19, 166(2021).

    [22] Wang J L, Munir A, Zhu Z Z et al. Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules[J]. Analytical Chemistry, 82, 6782-6789(2010).

    [23] Jia Y T, Peng Y, Bai J L et al. Magnetic nanoparticle enhanced surface plasmon resonance sensor for estradiol analysis[J]. Sensors and Actuators B: Chemical, 254, 629-635(2018).

    [24] Ma B L, Zeng F, Zheng F Y et al. A fluorescence turn-on sensor for iodide based on a thymine-HgII-thymine complex[J]. Chemistry, 17, 14844-14850(2011).

    [25] Wang F, Lu M D, Yuan H Z et al. pM level and large dynamic range glucose detection based on a sandwich type plasmonic fiber sensor[J]. Journal of Lightwave Technology, 39, 3882-3889(2021).

    [26] Zhou Y, Song D, Liu J Y et al. Research progress of Hg2+ biosensor based on T-Hg2+-T structure[J]. Environmental Chemistry, 40, 355-370(2021).

    [27] Caucheteur C, Chen C, Voisin V et al. A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors[J]. Applied Physics Letters, 99, 041118(2011).

    [28] Duan Y F. Ultra-trace detection of mercury ions based on TFBG-SPR[D], 25-37(2021).

    Tools

    Get Citation

    Copy Citation Text

    Fang Wang, Lanqi Lian, Mengdi Lu, Yang Zhang. Plasmonic Fiber Grating Sensors for Ultra-Trace Mercury Ion Detection[J]. Acta Optica Sinica, 2024, 44(9): 0928002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 11, 2024

    Accepted: Feb. 23, 2024

    Published Online: May. 10, 2024

    The Author Email: Fang Wang (wangfang06@tyut.edu.cn)

    DOI:10.3788/AOS240479

    CSTR:32393.14.AOS240479

    Topics