Optical Technique, Volume. 49, Issue 5, 631(2023)
Research on improved U-Net segmentation algorithm for abdominal organs and lungs
[1] [1] Ronneberger O, Fischer P, Brox T. U-Net:convolutional networks for biomedical image segmentation [C]∥International Conference on Medical Image Computing and Computer-assisted Intervention. Munich:Springer,2015:234-241.
[2] [2] Zhang Z, Liu Q, Wang Y. Road extraction by deep residual u-net[J]. IEEE Geoscience and Remote Sensing Letters,2018,15(5):749-753.
[3] [3] Alom Z M, Hasan M, Yakopcic C, et al. Recurrent residual convolutional neural network based on U-Net(R2U-Net) for medical image segmentation[DB/OL].(2018-5-29).https:∥arxiv. org / abs/ 1802. 06955v5.
[4] [4] Jian S, Kaiming H, Shaoqing R, et al. Deep residual learning for image recognition[C]∥IEEE Conference on Computer Vision & Pattern Recognition. Las Vegas,NV,USA:IEEE,2016: 770-778.
[6] [6] Gao Y, Zhou M, Metaxas D N. UTNet: a hybrid transformer architecture for medical image segmentation[C]∥International Conference on Medical Image Computing and Computer-assisted Intervention.France:Springer,2021: 61-71.
[7] [7] Wang H, Cao P, Wang J, et al. Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer[C]∥Proceedings of the AAAI conference on artificial intelligence.Vancouver,BC,Canada:AAAI,2022,36(3):2441-2449.
[9] [9] Valanarasu J M J, Patel V M. Unext: Mlp-based rapid medical image segmentation network[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland,2022:23-33.
[10] [10] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651.
[11] [11] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]∥Proceedings of the IEEE conference on computer vision and pattern recognition. Washington D.C.,USA: IEEE Press,2017:1251-1258.
[12] [12] LI J, WEI H. Slim-neck by GSConv:a better design paradigm of detector architectures for autonomous vehicles[EB/OL].[2021-11-14].https:∥ui.adsabs.harvard.edu/abs/2022arXiv220602424L/abstract.
[13] [13] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI, USA:IEEE,2017:4700-4708.
[14] [14] Lee Y, Hwang J, Lee S, et al. An energy and GPU-Computation efficient backbone network for real-time object detection[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Long Beach, CA, USA:IEEE,2019:752-760.
[15] [15] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]∥Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops.Seattle, WA, USA:IEEE,2020:390-391.
[16] [16] Varshney M, Singh P. Optimizing nonlinear activation function for convolutional neural networks[J]. Signal, Image and Video Processing,2021,15(6):1323-1330.
[17] [17] MisraD.Mish:Aselfregularizednon-monotonicneuralactivationfunction[EB/OL].[2021-03-10].https:∥arxiv.org/vc/arxiv/papers/1908/1908.08681v1.pdf.
[18] [18] Kavur A E, Gezer N S, Barls, M, et al.CHAOS Challenge-combined (CT-MR) healthy abdominal organ segmentation[J]. Medical Image Analysis,2021,69:101950.
[19] [19] Candemir S, Jaeger S, Palaniappan K, et al. Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration[J]. IEEE Transactions on Medical Imaging,2013,33(2):577-590.
[20] [20] Jaeger S, Karargyris A, Candemir S, et al. Automatic tuberculosis screening using chest radiographs[J]. IEEE Transactions on Medical Imaging,2013,33(2):233-245.
[21] [21] Braun T, Spiliopoulos S, Veltman C, et al. Detection of myocardial ischemia due to clinically asymptomatic coronary artery stenosis at rest using supervised artificial intelligence-enabled vectorcardiography–A five-fold cross validation of accuracy[J]. Journal of Electrocardiology,2020,59(1):100-105.
[22] [22] Yi D, Ahn J, Ji S. An effective optimization method for machine learning based on ADAM[J]. Applied Sciences,2020,10(3):1073.
[23] [23] Hurtik P, Tomasiello S, Hula J, et al. Binary cross-entropy with dynamical clipping[J]. Neural Computing and Applications,2022,34(14):12029-12041.
[24] [24] Liu Q, Liu H, Zhao Y, et al. Dual-branch network with dual-sampling modulated dice loss for hard exudate segmentation in color fundus images[J]. IEEE Journal of Biomedical and Health Informatics,2021,26(3):1091-1102.
Get Citation
Copy Citation Text
ZHENG Xukang, LI Zhizhong, QIN Junhao. Research on improved U-Net segmentation algorithm for abdominal organs and lungs[J]. Optical Technique, 2023, 49(5): 631