Journal of Synthetic Crystals, Volume. 51, Issue 3, 477(2022)
Theoretical Studies of the Thermal, Electronic and Mechanical Properties of Ti3(ZnxAl1-x)C2 Solid Solutions
[1] [1] CHING W Y, MO Y X, ARYAL S, et al. Intrinsic mechanical properties of 20 MAX-phase compounds[J]. Journal of the American Ceramic Society, 2013, 96(7): 2292-2297.
[2] [2] BARSOUM M, EL-RAGHY T. The MAX phases: unique new carbide and nitride materials[J]. American Scientist, 2001, 89(4): 334.
[4] [4] BARSOUM M W. The MN+1AXN phases: a new class of solids[J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4): 201-281.
[9] [9] HETTINGER J D, LOFLAND S E, FINKEL P, et al. Electrical transport, thermal transport, and elastic properties of M2AlC(M=Ti, Cr, Nb, and V)[J]. Physical Review B, 2005, 72(11): 115120.
[10] [10] RADOVIC M, BARSOUM M W, GANGULY A, et al. On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300-1573 K temperature range[J]. Acta Materialia, 2006, 54(10): 2757-2767.
[12] [12] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[J]. International Materials Reviews, 2011, 56(3): 143-166.
[13] [13] PIETZKA M A, SCHUSTER J C. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15(4): 392-400.
[15] [15] FENG R, LIAW P K, GAO M C, et al. First-principles prediction of high-entropy-alloy stability[J]. Npj Computational Materials, 2017, 3: 50.
[17] [17] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210-223.
[18] [18] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737.
[19] [19] ARYAL S, SAKIDJA R, BARSOUM M W, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases[J]. Physica Status Solidi (b), 2014, 251(8): 1480-1497.
[20] [20] KRESSE G. Ab initio molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1995, 192/193: 222-229.
[21] [21] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, Condensed Matter, 1992, 46(11): 6671-6687.
[22] [22] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[23] [23] PACK J D, MONKHORST H J. “Special points for Brillouin-zone integrations”: a reply[J]. Physical Review B, 1977, 16(4): 1748-1749.
[24] [24] MOMMA K, IZUMI F. VESTA: a three-dimensional visualization system for electronic and structural analysis[J]. Journal of Applied Crystallography, 2008, 41(3): 653-658.
[25] [25] TOGO A, CHAPUT L, TANAKA I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2[J]. Physical Review B, 2010, 81(17): 174301.
[26] [26] BORN M. On the stability of crystal lattices. I[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1940, 36(2): 160-172.
[27] [27] STEINLE-NEUMANN G, STIXRUDE L, COHEN R E. First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure[J]. Physical Review B, 1999, 60(2): 791-799.
[28] [28] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843.
Get Citation
Copy Citation Text
DENG Feiran, XU Min, MIAO Feng, HUANG Yi, FENG Shiquan, SONG Mingze, XIAO Chenda, LIN Yuanyuan, LI Huimin. Theoretical Studies of the Thermal, Electronic and Mechanical Properties of Ti3(ZnxAl1-x)C2 Solid Solutions[J]. Journal of Synthetic Crystals, 2022, 51(3): 477
Category:
Received: Oct. 29, 2021
Accepted: --
Published Online: Apr. 21, 2022
The Author Email: Feiran DENG (17740963062@163.com)
CSTR:32186.14.