Chinese Journal of Lasers, Volume. 47, Issue 7, 701011(2020)
Research Progress on Semiconductor Micro/Nanowire Lasers
[1] Dong Y J, Tian B Z, Kempa T J et al. Coaxial group III-nitride nanowire photovoltaics[J]. Nano Letters, 9, 2183-2187(2009).
[2] Wanekaya A K, Chen W, Myung N V et al. Nanowire-based electrochemical biosensors[J]. Electroanalysis, 18, 533-550(2006).
[3] Huang Y, Duan X F, Lieber C M. Nanowires for integrated multicolor nanophotonics[J]. Small, 1, 142-147(2005).
[4] Yan R X, Gargas D, Yang P D. Nanowire photonics[J]. Nature Photonics, 3, 569-576(2009).
[5] Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 4, 89-90(1964).
[6] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science, 279, 208-211(1998).
[7] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth[J]. Journal of the American Chemical Society, 123, 3165-3166(2001).
[8] Yang P D, Lieber C M. Nanorod-superconductor composites: a pathway to materials with high critical current densities[J]. Science, 273, 1836-1840(1996).
[9] Björk M T, Ohlsson B J, Sass T et al. One-dimensional heterostructures in semiconductor nanowhiskers[J]. Applied Physics Letters, 80, 1058-1060(2002).
[10] Bao X Y, Soci C, Susac D et al. Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition[J]. Nano Letters, 8, 3755-3760(2008).
[11] Zubia D, Hersee S D. Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials[J]. Journal of Applied Physics, 85, 6492-6496(1999).
[12] Smith P A, Nordquist C D, Jackson T N et al. Electric-field assisted assembly and alignment of metallic nanowires[J]. Applied Physics Letters, 77, 1399-1401(2000).
[13] Tao A R, Huang J X, Yang P D. Langmuir-Blodgettry of nanocrystals and nanowires[J]. Accounts of Chemical Research, 41, 1662-1673(2008).
[14] Yang P D. Wires on water[J]. Nature, 425, 243-244(2003).
[15] Huang Y, Duan X, Wei Q et al. Directed assembly of one-dimensional nanostructures into functional networks[J]. Science, 291, 630-633(2001).
[16] Messer B, Song J H, Yang P D. Microchannel networks for nanowire patterning[J]. Journal of the American Chemical Society, 122, 10232-10233(2000).
[17] Ahn J H, Kim H S, Lee K J et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials[J]. Science, 314, 1754-1757(2006).
[18] Pauzauskie P J, Radenovic A, Trepagnier E et al. Optical trapping and integration of semiconductor nanowire assemblies in water[J]. Nature Materials, 5, 97-101(2006).
[20] Li S F, Waag A. GaN based nanorods for solid state lighting[J]. Journal of Applied Physics, 111, 071101(2012).
[21] Choi J H, No Y S, So J P et al. A high-resolution strain-gauge nanolaser[J]. Nature Communications, 7, 11569(2016).
[22] Buus J, Murphy E J. Tunable lasers in optical networks[J]. Journal of Lightwave Technology, 24, 5-11(2006).
[23] Coldren L A, Fish G A, Akulova Y et al. Tunable semiconductor lasers: a tutorial[J]. Journal of Lightwave Technology, 22, 193-202(2004).
[24] Hänsch T W, Shahin I S, Schawlow A L. High-resolution saturation spectroscopy of the sodium D lines with a pulsed tunable dye laser[J]. Physical Review Letters, 27, 707-710(1971).
[25] Pascu M L, Moise N, Staicu A. Tunable dye laser applications in environment pollution monitoring[J]. Journal of Molecular Structure, 598, 57-64(2001).
[26] Pauzauskie P J, Sirbuly D J, Yang P D. Semiconductor nanowire ring resonator laser[J]. Physical Review Letters, 96, 143903(2006).
[27] Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids[J]. Physical Review, 92, 1324(1953).
[28] Tang H, Lévy F, Berger H et al. Urbach tail of anatase TiO2[J]. Physical Review B, 52, 7771-7774(1995).
[30] Li J, Meng C, Liu Y et al. Wavelength tunable CdSe nanowire lasers based on the absorption-emission-absorption process[J]. Advanced Materials, 25, 832-837(2013).
[31] Pan A, Liu D, Liu R et al. Optical waveguide through CdS nanoribbons[J]. Small, 1, 980-983(2005).
[32] Xu J, Zhuang X, Guo P et al. Asymmetric light propagation in composition-graded semiconductor nanowires[J]. Scientific Reports, 2, 820(2012).
[34] Zong H, Yang Y, Ma C et al. Flexibly and repeatedly modulating lasing wavelengths in a single core-shell semiconductor microrod[J]. ACS Nano, 11, 5808-5814(2017).
[35] Chu S, Wang G P, Zhou W H et al. Electrically pumped waveguide lasing from ZnO nanowires[J]. Nature Nanotechnology, 6, 506-510(2011).
[37] Zhao S, Liu X H, Wu Y et al. An electrically pumped 239 nm AlGaN nanowire laser operating at room temperature[J]. Applied Physics Letters, 109, 191106(2016).
[38] Liu C H, Xu H X, Ma J S et al. Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires[J]. Applied Physics Letters, 99, 063115(2011).
[39] Wang R J, Liu X D, Shih I et al. High efficiency, full-color AlInGaN quaternary nanowire light emitting diodes with spontaneous core-shell structures on Si[J]. Applied Physics Letters, 106, 261104(2015).
[40] Koblmüller G, Mayer B, Stettner T et al. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review[J]. Semiconductor Science and Technology, 32, 053001(2017).
[41] Nami M, Stricklin I E. DaVico K M, et al. Carrier dynamics and electro-optical characterization of high-performance GaN/InGaN core-shell nanowire light-emitting diodes[J]. Scientific Reports, 8, 1-11(2018).
[44] Xu H W, Wright J B, Hurtado A et al. Gold substrate-induced single-mode lasing of GaN nanowires[J]. Applied Physics Letters, 101, 221114(2012).
[45] Wang Y Y, Xu C X, Jiang M M et al. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect[J]. Nanoscale, 8, 16631-16639(2016).
[46] Purcell E M, Torrey H C, Pound R V. Resonance absorption by nuclear magnetic moments in a solid[J]. Physical Review, 69, 37-38(1946).
[47] Yang Y, Zong H, Ma C et al. Self-selection mechanism of Fabry-Pérot micro/nanoscale wire cavity for single-mode lasing[J]. Optics Express, 25, 21025-21036(2017).
[48] Scofield A C, Kim S H, Shapiro J N et al. Bottom-up photonic crystal lasers[J]. Nano Letters, 11, 5387-5390(2011).
[49] Xiao Y, Meng C, Wang P et al. Single-nanowire single-mode laser[J]. Nano Letters, 11, 1122-1126(2011).
[50] Yang Y, Wei T T, Zhu R et al. Tunable single-mode lasing in a single semiconductor microrod[J]. Optics Express, 26, 30021-30029(2018).
[53] Jayaprakash R, Kalaitzakis F G, Christmann G et al. Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap[J]. Scientific Reports, 7, 5542(2017).
[54] Deveaud B. Exciton-polariton Bose-Einstein condensates[J]. Annual Review of Condensed Matter Physics, 6, 155-175(2015).
[55] Gérard J, Gayral B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities[J]. Journal of Lightwave Technology, 17, 2089-2095(1999).
[56] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).
[57] Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proceedings of the IEEE, 51, 89-109(1963).
[58] Khitrova G, Gibbs H M, Kira M et al. Vacuum Rabi splitting in semiconductors[J]. Nature Physics, 2, 81-90(2006).
[59] Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation[J]. Reviews of Modern Physics, 82, 1489-1537(2010).
[61] Laussy F P, Malpuech G, Kavokin A V et al. Spontaneous coherence buildup in polariton lasers[J]. Solid State Communications, 134, 121-125(2005).
[62] Guillet T, Brimont C. Polariton condensates at room temperature[J]. Comptes Rendus Physique, 17, 946-956(2016).
[63] Das A, Heo J, Jankowski M et al. Room temperature ultralow threshold GaN nanowire polariton laser[J]. Physical Review Letters, 107, 066405(2011).
[64] Das A, Bhattacharya P, Banerjee A et al. Dynamic polariton condensation in a single GaN nanowire-dielectric microcavity[J]. Physical Review B, 85, 195321(2012).
[65] Heo J, Jahangir S, Xiao B et al. Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity[J]. Nano Letters, 13, 2376-2380(2013).
[66] Trichet A A P, Médard F, Zunigaperez J et al. From strong to weak coupling regime in a single GaN microwire up to room temperature[J]. New Journal of Physics, 14, 073004(2012).
[67] Gong S H, Ko S M, Jang M H et al. Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire[J]. Nano Letters, 15, 4517-4524(2015).
[69] Xu D, Xie W, Liu W H et al. Polariton lasing in a ZnO microwire above 450 K[J]. Applied Physics Letters, 104, 082101(2014).
[70] Bhattacharya P, Xiao B, Das A et al. Solid state electrically injected exciton-polariton laser[J]. Physical Review Letters, 110, 206403(2013).
[71] Schneider C, Rahimi-Iman A, Kim N Y et al. An electrically pumped polariton laser[J]. Nature, 497, 348-352(2013).
[72] Bhattacharya P, Frost T, Deshpande S et al. Room temperature electrically injected polariton laser[J]. Physical Review Letters, 112, 236802(2014).
Get Citation
Copy Citation Text
Yu Guo, Li Junchao, Wen Peijun, Hu Xiaodong. Research Progress on Semiconductor Micro/Nanowire Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 701011
Special Issue:
Received: Mar. 5, 2020
Accepted: --
Published Online: Jul. 10, 2020
The Author Email: Xiaodong Hu (huxd@pku.edu.cn)