Opto-Electronic Engineering, Volume. 50, Issue 7, 230052(2023)

Progressive multi-granularity ResNet vehicle recognition network

Shengjun Xu1,2, Yang Jing1,2、*, Haitao Li3, Zhongxing Duan1,2, Fuyou Liu4, and Minghai Li1,2
Author Affiliations
  • 1College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, Shannxi 710055, China
  • 2Xi'an Key Labratory of Building Manufactaring Intelligent & Automation Technology, Xi'an, Shannxi 710055, China
  • 3Traffic Engineering Construction Bureau of Jiangsu Province, Nanjing, Jiangsu 210024, China
  • 4CCCC Tunel Engineering Company Limited, Beijing 100024, China
  • show less
    Figures & Tables(14)
    Overall structure of the proposed network
    Progressive multi-granularity Local Convolution Block
    Random channel drop block schematic diagram
    Progressive multi-granularity training block schematic diagram
    Top1/% curve of change. (a) Effect of β values on RCDB on Stanford-cars; (b) Effect of β values on RCDB on Compcars; (c) Effect of β values on RCDB on VMRURS
    Network training and testing process
    Visual comparison of vehicle recognition in each stage
    Visual comparison of after adding each module
    Visual comparison of different network vehicle recognition
    • Table 1. Progressive multi-granularity training steps

      View table
      View in Article

      Table 1. Progressive multi-granularity training steps

      渐进式多粒度训练过程
      输入:训练数据集D,训练数据的批次为x,标签样本为yP代表多粒度渐进式网络学习, LCE代表交叉熵损失(cross entropy loss, CE)
      Forepoch[0,epochs]do
      Forb[0,batchs]do
      x,ybatchbofD
      Forl[LS+1,L]do
      ylHclassl[HConvl(Fl(P(x,n)))]
      LlLCE(yl,y)
      Backpropagation Ll
      End for
      yConcat=HclassConcat{Concat[V(LS+1),,VL]}
      LConcatLCE(yConcat,y)
      Backpropagation LConcat
      End for
      End for
    • Table 2. Comparison of PLCB split size at each stage

      View table
      View in Article

      Table 2. Comparison of PLCB split size at each stage

      Stage1Stage2Stage3Stage4Accuracy/%
      111193.5
      222293.9
      444494.2
      888894.0
      1684293.6
      842194.5
      421193.9
    • Table 3. Ablation experiment of recognition effect after adding different layers to the RCDB module

      View table
      View in Article

      Table 3. Ablation experiment of recognition effect after adding different layers to the RCDB module

      ResNet50Layer1Layer2Layer3Layer4Accuracy/%
      91.5
      92.3
      92.9
      93.0
      92.6
      93.2
    • Table 4. Different modules are added to the network

      View table
      View in Article

      Table 4. Different modules are added to the network

      BaselinePLCBRCDBAccuracy/%
      91.5
      94.8
      93.2
      95.7
    • Table 5. Comparison of recognition accuracy of different network models

      View table
      View in Article

      Table 5. Comparison of recognition accuracy of different network models

      MethodsBackboneStanford-cars/%Compcars/%VMRURS/%Speed/(f/s)Params/MFLOPs/G
      基线[25]ResNet5091.594.187.14.1523.5033.05
      FBSD[31]ResNet5094.496.892.31.7346.8253.11
      LIO[32]ResNet5094.596.894.23.6024.5733.06
      DCL[33]ResNet5094.596.794.73.4624.9133.06
      Cross-X[34]ResNet5094.697.094.63.8825.5638.86
      CAL[17]ResNet5095.598.096.43.7233.7333.08
      WS-DAN[18]ResNet5094.597.195.64.0233.2433.08
      PMG[26]ResNet5095.197.895.72.9445.1269.82
      CN-CNN[35]ResNet5094.997.694.91.9242.3147.65
      OursResNet5095.798.897.42.9740.6469.61
    Tools

    Get Citation

    Copy Citation Text

    Shengjun Xu, Yang Jing, Haitao Li, Zhongxing Duan, Fuyou Liu, Minghai Li. Progressive multi-granularity ResNet vehicle recognition network[J]. Opto-Electronic Engineering, 2023, 50(7): 230052

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Mar. 5, 2023

    Accepted: Jun. 5, 2023

    Published Online: Sep. 25, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230052

    Topics