Optics and Precision Engineering, Volume. 32, Issue 12, 1954(2024)
Dual attention refinement single image desnowing
[1] BOSSU J, HAUTIÈRE N, TAREL J P. Rain or snow detection in image sequences through use of a Histogram of orientation of streaks[J]. International Journal of Computer Vision, 93, 348-367(2011).
[2] ZHENG X H, LIAO Y H, GUO W et al. Single-image-based rain and snow removal using multi-guided filter[C], 258-265(2013).
[3] PEI S C, TSAI Y T, LEE C Y. Removing rain and snow in a single image using saturation and visibility features[C], 1-6(2014).
[4] RAJDERKAR D, MOHOD P S. Removing snow from an image via image decomposition[C], 576-579(2013).
[5] LIU Y F, JAW D W, HUANG S C et al. DesnowNet: context-aware deep network for snow removal[J]. IEEE Transactions on Image Processing, 27, 3064-3073(2018).
[6] CHEN W T, FANG H Y, DING J J et al. JSTASR: joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal[C], 754-770(2020).
[7] CHEN W T, FANG H Y, HSIEH C L et al. ALL snow removed: single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss[C], 4176-4185(2021).
[8] WANG Y L, MA C, LIU J Z. SmartAssign: learning a smart knowledge assignment strategy for deraining and desnowing[C], 3677-3686(2023).
[9] PARK J, LEE J Y et al. CBAM: convolutional block attention module[C], 3-19(2018).
[10] FU J, LIU J, TIAN H J et al. Dual attention network for scene segmentation[C], 3141-3149(2019).
[11] DING M Y, XIAO B, CODELLA N et al. DaViT: dual attention vision transformers[C], 74-92(2022).
[12] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C], 7132-7141(2018).
[13] CHEN L Y, CHU X J, ZHANG X Y et al. Simple baselines for image restoration[C], 17-33(2022).
[14] LI Y W, FAN Y C, XIANG X Y et al. Efficient and explicit modelling of image hierarchies for image restoration[C], 18278-18289(2023).
[15] ZHAO H Y, KONG X T, HE J W et al. Efficient image super-resolution using pixel attention[C], 56-72(2020).
[16] ZOU W B, YE T, ZHENG W X et al. Self-calibrated efficient transformer for lightweight super-resolution[C], 929-938(2022).
[17] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C], 234-241(2015).
[18] ZAMIR S W, ARORA A, KHAN S et al. Restormer: efficient transformer for high-resolution image restoration[C], 5718-5729(2022).
[19] CHEN L Y, LU X, ZHANG J et al. HINet: half instance normalization network for image restoration[C], 182-192(2021).
[20] WANG Z, BOVIK A C, SHEIKH H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).
[21] ENGIN D, GENC A, EKENEL H K. Cycle-dehaze: enhanced cyclegan for single image dehazing[C], 938-9388(2018).
[22] LI X, WU J L, LIN Z C et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C], 262-277(2018).
[23] LI R T, TAN R T, CHEONG L F. All in one bad weather removal using architectural search[C], 3172-3182(2020).
[24] JOSE VALANARASU J M, YASARLA R, PATEL V M. TransWeather: transformer-based restoration of images degraded by adverse weather conditions[C], 2343-2353(2022).
Get Citation
Copy Citation Text
Mingzhu SHI, Bin ZAO, Yuhao SU, Xinhui LIN, Siqi KONG, Muxian TAN. Dual attention refinement single image desnowing[J]. Optics and Precision Engineering, 2024, 32(12): 1954
Category:
Received: Nov. 13, 2023
Accepted: --
Published Online: Aug. 28, 2024
The Author Email: Mingzhu SHI (shimz@tjnu.edu.cn)