Acta Photonica Sinica, Volume. 52, Issue 11, 1116001(2023)

Progress and Challenges of Efficient and Stable Halide-based Perovskite Solar Cells(Invited)

Kun HE1, Xiaoliang ZHAO1, Jun WANG1, Bixin LI2,3、*, Bin DU1、**, and Yanlong WANG4、***
Author Affiliations
  • 1School of Materials Science and Engineering,Xi'an Polytechnic University,Xi'an 710048,China
  • 2School of Physics and Chemistry,Hunan First Normal University,Changsha 410205,China
  • 3Shaanxi Institute of Flexible Electronics,Northwestern Polytechnical University,Xi'an 710072,China
  • 4Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China
  • show less
    References(137)

    [1] LI Taotao, PAN Yufeng, WANG Ze et al. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: recent advances and perspectives[J]. Journal of Materials Chemistry A, 5, 12602-12652(2017).

    [2] ROY P, KUMAR S N, TIWARI S et al. A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status[J]. Solar Energy, 198, 665-688(2020).

    [3] XIANG Huimin, LIU Pengyu, WANG Wei et al. Towards highly stable and efficient planar perovskite solar cells: materials development, defect control and interfacial engineering[J]. Chemical Engineering Journal, 420, 127599(2021).

    [4] ZHANG Xisheng, YAN Chunyu, WANG Jingzhou et al. Optimizing processes of silicon heterojunction solar cell[J]. Acta Photonica Sinica, 50, 1223001(2021).

    [5] LIU Wu, LI Haotian, QIAO Bo et al. Highly efficient CIGS solar cells based on a new CIGS bandgap gradient design characterized by numerical simulation[J]. Solar Energy, 233, 337-344(2022).

    [7] LI C, LU Xionggang, DING Weizhong et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B, 64, 702-707(2008).

    [8] GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 8, 506-514(2014).

    [9] CHEN Yonghua, CHEN Tao, DAI Liming. Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells[J]. Advanced Materials, 27, 1053-1059(2015).

    [10] OGOMI Y, MORITA A, TSUKAMOTO S et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm[J]. The Journal of Physical Chemistry Letters, 5, 1004-1011(2014).

    [11] JIANG Ying, WANG Xiao, PAN Anlian. Properties of excitons and photogenerated charge carriers in metal halide perovskites[J]. Advanced Materials, 31, 1806671(2019).

    [12] MIKHNENKO O V, BLOM P W M, NGUYEN T Q. Exciton diffusion in organic semiconductors[J]. Energy & Environmental Science, 8, 1867-1888(2015).

    [13] NAYAK P K, PERIASAMY N. Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using ‘solvation’ model and DFT[J]. Organic Electronics, 10, 1396-1400(2009).

    [14] KAMAT P V. Evolution of perovskite photovoltaics and decrease in energy payback time[J]. The Journal of Physical Chemistry Letters, 4, 3733-3734(2013).

    [15] SONG T B, CHEN Qi, ZHOU Huanping et al. Perovskite solar cells: Film formation and properties[J]. Journal of Materials Chemistry A, 3, 9032-9050(2015).

    [16] SUM T C, MATHEWS N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics[J]. Energy & Environmental Science, 7, 2518-2534(2014).

    [17] MICHAEL G. The light and shade of perovskite solar cells[J]. Nature Materials, 13, 838-842(2014).

    [18] JUNG H S, PARK N G. Perovskite solar cells: From materials to devices[J]. Small, 11, 10-25(2015).

    [19] SHEN Lening, WU Haodong, ZHU Tao et al. Three- and two-dimensional mixed metal halide perovskites for high-performance photovoltaics[J]. Organic Electronics, 118, 106796(2023).

    [20] WU Xiaomin, GAO Changsong, CHEN Qizhen et al. High-performance vertical field-effect organic photovoltaics[J]. Nature Communications, 14, 1579(2023).

    [21] YAO Lijuan, FANG Xuan, FANG Dan et al. Research progress of the stability and photodetectors applications of organic-inorganic hybrid halide perovskite materials(Invited)[J]. Acta Photonica Sinica, 50, 0150001(2021).

    [22] TAN S, HUANG Tianyi, YAVUZ I et al. Stability-limiting heterointerfaces of perovskite photovoltaics[J]. Nature, 605, 268-273(2022).

    [23] KIM J Y, LEE J W, JUNG H S et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 120, 7867-7918(2020).

    [24] KOJIMA A, TESHIMA K, SHIRAI Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [25] IM J H, LEE C R, LEE J W et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 3, 4088-4093(2011).

    [26] LUO Deying, SU Rui, ZHANG Wei et al. Minimizing non-radiative recombination losses in perovskite solar cells[J]. Nature Reviews Materials, 5, 44-60(2019).

    [27] KIM H S, LEE C R, IM J H et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2, 591(2012).

    [28] BURSCHKA J, PELLET N, MOON S J et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 499, 316-319(2013).

    [29] JEON N J, NA H, JUNG E H et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 3, 682-689(2018).

    [30] JEONG M, CHOI I W, GO E M et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss[J]. Science, 369, 1615-1620(2020).

    [31] LEE M M, TEUSCHER J, MIYASAKA T et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 338, 643-647(2012).

    [32] BALL J M, LEE M M, HEY A et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J]. Energy & Environmental Science, 6, 1739-1743(2013).

    [33] BI Dongqin, MOON S J, HÄGGMAN L et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2and TiO2 mesostructures[J]. RSC Advances, 3, 18762-18766(2013).

    [34] HWANG S H, ROH J, LEE J et al. Size-controlled SiO2 nanoparticles as scaffold layers in thin-film perovskite solar cells[J]. Journal of Materials Chemistry A, 2, 16429-16433(2014).

    [35] YOO J J, WIEGHOLD S, SPONSELLER M C et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss[J]. Energy & Environmental Science, 12, 2192-2199(2019).

    [36] EPERON G E, BURLAKOV V M, DOCAMPO P et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Advanced Functional Materials, 24, 151-157(2014).

    [37] LIU Dianyi, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 8, 133-138(2013).

    [38] ANARAKI E H, KERMANPUR A, STEIER L et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 9, 3128-3134(2016).

    [39] YOO J J, SEO G, CHUA M R et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 590, 587-593(2021).

    [40] MIN H, LEE D Y, KIM J et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 598, 444-450(2021).

    [41] ZHAO Yang, MA Fei, QU Zihan et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells[J]. Science, 377, 531-534(2022).

    [42] JENG J Y, CHIANG Y F, LEE M H et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 25, 3727-3732(2013).

    [43] WANG Yunxiang, ZHANG Jihua, WU Yanhua et al. Perovskite solar cells based on graphene oxide hole transport layer[J]. Acta Photonica Sinica, 48, 0316001(2019).

    [44] ZHENG Xiaopeng, HOU Yi, BAO Chunxiong et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells[J]. Nature Energy, 5, 131-140(2020).

    [45] WANG Xiao, RAKSTYS K, JACK K et al. Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity[J]. Nature Communications, 12, 52(2021).

    [46] JIANG Qi, TONG Jinhui, XIAN Yeming et al. Surface reaction for efficient and stable inverted perovskite solar cells[J]. Nature, 611, 278-283(2022).

    [47] CHEN Bo, RUDD P N, YANG Shuang et al. Imperfections and their passivation in halide perovskite solar cells[J]. Chemical Society Reviews, 48, 3842-3867(2019).

    [48] SHOCKLEY W, READ W T. Statistics of the recombinations of holes and electrons[J]. Physical Review, 87, 835-842(1952).

    [49] ONO L K, LIU Shengzhong, QI Yabing. Reducing detrimental defects for high-performance metal halide perovskite solar cells[J]. Angewandte Chemie International Edition, 59, 6676-6698(2020).

    [50] NI Zhenyi, BAO Chunxiong, LIU Ye et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science, 367, 1352-1358(2020).

    [51] WEI Yuelin, RONG Bin, CHEN Xia et al. Efficiency improvement of perovskite solar cell utilizing cystamine dihydrochloride for interface modification[J]. Materials Research Bulletin, 155, 111949(2022).

    [52] GENG Quanming, JIA Xiangrui, HE Zhengyan et al. Interface engineering via amino acid for efficient and stable perovskite solar cells[J]. Advanced Materials Interfaces, 9, 2201641(2022).

    [53] LI Yan, LI Siqi, SHEN Yujie et al. Multifunctional histidine cross-linked interface toward efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 14, 47872-47881(2022).

    [54] WANG Bin, MA Junjie, LI Zehua et al. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells[J]. Nano Research, 15, 1069-1078(2021).

    [55] ZHANG Quanzeng, XIONG Shaobing, ALI J et al. Polymer interface engineering enabling high-performance perovskite solar cells with improved fill factors of over 82%[J]. Journal of Materials Chemistry C, 8, 5467-5475(2020).

    [56] WAN Fang, KE Lili, YUAN Yongbo et al. Passivation with crosslinkable diamine yields 0.1 V non-radiative VOC loss in inverted perovskite solar cells[J]. Science Bulletin, 66, 417-420(2021).

    [57] ZHONG Hua, JIA Zhongzhong, SHEN Jinliang et al. Surface treatment of the perovskite via self-assembled dipole layer enabling enhanced efficiency and stability for perovskite solar cells[J]. Applied Surface Science, 602, 154365(2022).

    [58] XU Shendong, ZHANG Liying, LIU Boyuan et al. Constructing of superhydrophobic and intact crystal terminal: Interface sealing strategy for stable perovskite solar cells with efficiency over 23%[J]. Chemical Engineering Journal, 453, 139808(2023).

    [59] XU Jie, DAI Jinfei, DONG Hua et al. Surface-tension release in PTAA-based inverted perovskite solar cells[J]. Organic Electronics, 100, 106378(2022).

    [60] WU Tianhao, ONO L K, YOSHIOKA R et al. Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic sulfonium layers towards long-term operationally stable inverted perovskite solar cells[J]. Energy & Environmental Science, 15, 4612-4624(2022).

    [61] HE Zhen, XU Cai, LI Lianjie et al. Highly efficient and stable perovskite solar cells induced by novel bulk organosulfur ammonium[J]. Materials Today Energy, 26, 101004(2022).

    [62] MCMEEKIN D P, HOLZHEY P, FURER S O et al. Intermediate-phase engineering via dimethylammonium cation additive for stable perovskite solar cells[J]. Nature Materials, 22, 73-83(2023).

    [63] LI Deguan, XIA Tian, LIU Weiting et al. Methylammonium thiocyanate seeds assisted heterogeneous nucleation for achieving high-performance perovskite solar cells[J]. Applied Surface Science, 592, 153206(2022).

    [64] NIU Tingting, CHAO Lingfeng, GAO Weiyin et al. Ionic liquids-enabled efficient and stable perovskite photovoltaics: progress and challenges[J]. ACS Energy Letters, 6, 1453-1479(2021).

    [65] SHAHIDUZZAMAN M, YAMAMOTO K, FURUMOTO Y et al. Ionic liquid-assisted growth of methylammonium lead iodide spherical nanoparticles by a simple spin-coating method and photovoltaic properties of perovskite solar cells[J]. RSC Advances, 5, 77495-77500(2015).

    [66] RAN Junhui, WANG Hao, DENG Wen et al. Ionic liquid-tuned crystallization for stable and efficient perovskite solar cells[J]. Solar RRL, 6, 2200176(2022).

    [67] CHANG C Y, CHU C Y, HUANG Y C et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell[J]. ACS Applied Materials & Interfaces, 7, 4955-4961(2015).

    [68] LI Lihua, TU Silong, YOU Guofeng et al. Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry[J]. Chemical Engineering Journal, 431, 133951(2022).

    [69] KROTO H W, HEATH J R, OBRIEN S C et al. C60: buckminsterfullerene[J]. Nature, 318, 162-163(1985).

    [70] ZHANG Feng, ZHU Kai. Additive engineering for efficient and stable perovskite solar cells[J]. Advanced Energy Materials, 10, 1902579(2019).

    [71] KIM K, WU Z, HAN J et al. Homogeneously miscible fullerene inducing vertical gradient in perovskite thin-film toward highly efficient solar cells[J]. Advanced Energy Materials, 12, 2200877(2022).

    [72] XIAO Manda, HUANG Fuzhi, HUANG Wenchao et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte Chemie, 53, 9898-9903(2014).

    [73] CHOI H, LIU Xiaoyuan, KIM H I et al. A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive[J]. Advanced Energy Materials, 11, 2003829(2021).

    [74] GUO Junjun, SUN Jiaoguo, HU Long et al. Indigo: A natural molecular passivator for efficient perovskite solar cells[J]. Advanced Energy Materials, 12, 2200537(2022).

    [75] LIU Zonghao, ONO L K, QI Yabing. Additives in metal halide perovskite films and their applications in solar cells[J]. Journal of Energy Chemistry, 46, 215-228(2020).

    [76] MO Hongbo, WANG Dong, CHEN Qian et al. Laser-assisted ultrafast fabrication of crystalline Ta-doped TiO2 for high-humidity-processed perovskite solar cells[J]. ACS Applied Materials & Interfaces, 14, 15141-15153(2022).

    [77] DENG Jidong, ZHANG Huifeng, WEI Kun et al. Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells[J]. Advanced Functional Materials, 32, 2209516(2022).

    [78] MA Hongru, WANG Minhuan, WANG Yudi et al. Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells[J]. Chemical Engineering Journal, 442, 136291(2022).

    [79] RAJENDRAN M V, GANESAN S, MENON V S et al. Manganese dopant-induced isoelectric point tuning of ZnO electron selective layer enable improved interface stability in cesium-formamidinium-based planar perovskite solar cells[J]. ACS Applied Energy Materials, 5, 6671-6686(2022).

    [80] YANG Heyi, SHEN Yunxiu, ZHANG Rui et al. Composition-conditioning agent for doped Spiro-OMeTAD to realize highly efficient and stable perovskite solar cells[J]. Advanced Energy Materials, 12, 2202207(2022).

    [81] XU Dongdong, GONG Zhiming, JIANG Yue et al. Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT[J]. Nature Communications, 13, 7020(2022).

    [82] SUN Jingsong, ZHANG Ningjun, WU Jiarui et al. Additive engineering of the CuSCN hole transport layer for high-performance perovskite semitransparent solar cells[J]. ACS Applied Materials & Interfaces, 14, 52223-52232(2022).

    [83] LIU Tao, GUO Xi, LIU Yinjiang et al. 4-trifluorophenylammonium iodide-based dual interfacial modification engineering toward improved efficiency and stability of SnO2-based perovskite solar cells[J]. ACS Applied Materials & Interfaces, 15, 6777-6787(2023).

    [84] YU Xuemei, ZHOU Qian, ZHENG Tian et al. Interface engineering for achieving efficient and stable perovskite solar cells by Bphen-fullerene dimer[J]. Chemical Engineering Journal, 452, 139412(2023).

    [85] LI Hui, FU Ping, LU Ruixue et al. Chloroformamidine hydrochloride as a molecular linker towards efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry C, 11, 5039-5044(2023).

    [86] WU Xueyun, ZHENG Yiting, LIANG Jianghu et al. Green-solvent-processed formamidinium-based perovskite solar cells with uniform grain growth and strengthened interfacial contact via a nanostructured tin oxide layer[J]. Materials Horizons, 10, 122-135(2023).

    [87] SHA Xuan, SHENG Jiang, YANG Weichuang et al. Interfacial defect passivation by using diethyl phosphate salts for high-efficiency and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 11, 6556-6564(2023).

    [88] YANG Lu, ZHOU Hui, DUAN Yuwei et al. 25.24%-efficiency FACsPbI3 perovskite solar cells enabled by intermolecular esterification reaction of DL-carnitine hydrochloride[J]. Advanced Materials, 35, 2211545(2023).

    [89] YIN Li, DING Changzeng, LIU Chenguang et al. A multifunctional molecular bridging layer for high efficiency, hysteresis-free, and stable perovskite solar cells[J]. Advanced Energy Materials, 13, 2301161(2023).

    [90] CHEN Chunlei, ZHU Yunfei, GAO Deyu et al. Molecular synergistic passivation for efficient perovskite solar cells and self-powered photodetectors[J]. Small, 19, 2303200(2023).

    [91] SUN Weiwei, WANG Kexiang, LIU Weifeng et al. Bidirectional modification of buried interface reduces energy loss for planar perovskite solar cells with efficiency >23%[J]. Solar RRL, 7, 2200991(2023).

    [92] Zou Hanjun, Bi Huan, Chen Yongheng et al. Functionalized polymer modified buried interface for enhanced efficiency and stability of perovskite solar cells[J]. Nanoscale, 15, 2054-2060(2023).

    [93] ZHANG Xuecong, ZHOU Yan, CHEN Muyang et al. Novel bilayer SnO2 electron transport layers with atomic layer deposition for high-performance α-FAPbI3 perovskite solar cells[J]. Small, 19, 2303254(2023).

    [94] ZHOU Hui, YANG Lu, DUAN Yuwei et al. 24.96%-efficiency FACsPbI3 perovskite solar cells enabled by an asymmetric 1,3-thiazole-2,4-diammonium[J]. Advanced Energy Materials, 13, 2204372(2023).

    [95] DONG Jingjin, YAN Suhao, CHEN Haoyu et al. Approaching full-scale passivation in perovskite solar cells via valent-variable carbazole cations[J]. ACS Energy Letters, 8, 2772-2780(2023).

    [96] ZHANG Dan, WANG Xiaofeng, TIAN Tianfang et al. Multi-functional buried interface engineering derived from in-situ-formed 2D perovskites using π-conjugated liquid-crystalline molecule with aggregation-induced emission for efficient and stable NiOx-based inverted perovskite solar cells[J]. Chemical Engineering Journal, 469, 143789(2023).

    [97] JIANG Zhengyan, WANG Deng, SUN Jiayun et al. Quenching detrimental reactions and boosting hole extraction via multifunctional NiOx/perovskite interface passivation for efficient and stable inverted solar cells[J]. Small Methods, 202300241(2023).

    [98] QIU Wenyu, WU Yukun, WANG Yichen et al. Low-temperature robust MAPbI3 perovskite solar cells with power conversion efficiency exceeding 22.4%[J]. Chemical Engineering Journal, 468, 143656(2023).

    [99] YANG Weichuang, DING Bin, LIN Zedong et al. Visualizing interfacial energy offset and defects in efficient 2D/3D heterojunction perovskite solar cells and modules[J]. Advanced Materials, 35, 2302071(2023).

    [100] YAO Hengda, XU Yinyan, ZHANG Guobing et al. Multifunctional cross-linked polyurethane polymer as interface layer for efficient and stable perovskite solar cells[J]. Advanced Functional Materials, 33, 2302161(2023).

    [101] LIU Le, TANG Jin, LI Saisai et al. Multi-site intermolecular interaction for in situ formation of vertically orientated 2D passivation layer in highly efficient perovskite solar cells[J]. Advanced Functional Materials, 33, 2303038(2023).

    [102] WU Yinghui, LIANG Qihua, ZHU Hongwei et al. Molecularly tailored surface defect modifier for efficient and stable perovskite solar cells[J]. Advanced Functional Materials, 33, 2302404(2023).

    [103] ZHANG Kai, DING Bin, WANG Chenyue et al. Highly efficient and stable FAPbI3 perovskite solar cells and modules based on exposure of the (011) facet[J]. Nano-Micro Letters, 15, 138(2023).

    [104] SUN Derun, GAO You, RAZA H et al. Chemical reduction of iodine impurities and defects with potassium formate for efficient and stable perovskite solar cells[J]. Advanced Functional Materials, 33, 2303225(2023).

    [105] WANG Fei, ZHOU Kang, LIANG Xiao et al. Revealing size-dependency of ionic liquid to assist perovskite film formation mechanism for efficient and durable perovskite solar cells[J]. Small Methods, 202300210(2023).

    [106] WANG Fangfang, LI Mubai, TIAN Qiushuang et al. Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance[J]. Nature Communications, 14, 3216(2023).

    [107] ZHANG Jiakang, LI Zhipeng, GUO Fengjuan et al. Thermally crosslinked F-rich polymer to inhibit lead leakage for sustainable perovskite solar cells and modules[J]. Angewandte Chemie International Edition, 62, e202305221(2023).

    [108] GUAN Nianci, WU Guo, WANG Jian et al. Improved power conversion efficiency and stability of perovskite solar cells induced by molecular interaction with poly(ionic liquid) additives[J]. ACS Applied Materials & Interfaces, 15, 26872-26881(2023).

    [109] SU Hang, ZHANG Jing, HU Yingjie et al. Modulation on electrostatic potential of passivator for highly efficient and stable perovskite solar cells[J]. Advanced Functional Materials, 33, 2213123(2023).

    [110] ZHI Rui, YANG Chenquan, ROTHMANN M U et al. Direct observation of intragrain defect elimination in FAPbI3 perovskite solar cells by two-dimensional PEA2PbI4[J]. ACS Energy Letters, 8, 2620-2629(2023).

    [111] HUANG Lishuai, CUI Hongsen, ZHANG Wenjun et al. Efficient narrow-bandgap mixed tin-lead perovskite solar cells via natural tin oxide doping[J]. Advanced Materials, 35, 2301125(2023).

    [112] HE Li, SU Hongzhen, LI Zhengping et al. Multiple function synchronous optimization by PbS quantum dots for highly stable planar perovskite solar cells with efficiency exceeding 23%[J]. Advanced Functional Materials, 33, 2213963(2023).

    [113] SUN Jia, GU Yinsheng, LU Yingwei et al. Synergistic strategy of rubidium chloride regulated SnO2 and 4-tert-butyl-benzylammonium iodide passivated MAxFA1-xPbI3 for efficient mixed-cation perovskite solar cells[J]. Chemical Engineering Journal, 468, 143722(2023).

    [114] YAN Tong, ZHANG Chenxi, LI Shiqi et al. Multifunctional aminoglycoside antibiotics modified SnO2 enabling high efficiency and mechanical stability perovskite solar cells[J]. Advanced Functional Materials, 33, 2302336(2023).

    [115] KIM Y, KIM G, PARK E Y et al. Alkylammonium bis(trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 16, 2226-2238(2023).

    [116] LAI Qian, ZHUANG Rongshan, ZHANG Kun et al. A multifunctional liquid crystal as hole transport layer additive enhances efficiency and stability of perovskite solar cells[J]. Angewandte Chemie International Edition, 62, e202305670(2023).

    [117] LI Nengxu, NIU Xiuxiu, CHEN Qi et al. Towards commercialization: the operational stability of perovskite solar cells[J]. Chemical Society Reviews, 49, 8235-8286(2020).

    [118] BOYD C C, CHEACHAROEN R, LEIJTENS T et al. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics[J]. Chemical Reviews, 119, 3418-3451(2019).

    [119] BRIVIO F, CAETANO C, WALSH A. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1-xBrx)3 hybrid halide perovskite alloy[J]. The Journal of Physical Chemistry Letters, 7, 1083-1087(2016).

    [120] YOON S J, DRAGUTA S, MANSER J S et al. Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation[J]. ACS Energy Letters, 1, 290-296(2016).

    [121] SLOTCAVAGE D J, KARUNADASA H I, MCGEHEE M D. Light-induced phase segregation in halide-perovskite absorbers[J]. ACS Energy Letters, 1, 1199-1205(2016).

    [122] SON D Y, KIM S G, SEO J Y et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering[J]. Journal of the American Chemical Society, 140, 1358-1364(2018).

    [123] TOLOUEINIA P, KHASSAF H, AMIN A S et al. Moisture-induced structural degradation in methylammonium lead iodide perovskite thin films[J]. ACS Applied Energy Materials, 3, 8240-8248(2020).

    [124] FROST J M, BUTLER K T, BRIVIO F et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J]. Nano Letters, 14, 2584-2590(2014).

    [125] DOU Jing, BAI Yang, CHEN Qi. Challenges of lead leakage in perovskite solar cells[J]. Materials Chemistry Frontiers, 6, 2779-2789(2022).

    [126] LI Junming, CAO Hailei, JIAO Wenbin et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold[J]. Nature Communications, 11, 310(2020).

    [127] ORTEGA D R, ESQUIVEL D F G, AYALA T B et al. Cognitive impairment induced by lead exposure during lifespan: mechanisms of lead neurotoxicity[J]. Toxics, 9, 23(2021).

    [128] LAMAS G A, UJUETA F, NAVAS-ACIEN A. Lead and cadmium as cardiovascular risk factors: the burden of proof has been met[J]. Journal of the American Heart Association, 10, e018692(2021).

    [129] KIM D, CHOI H, JUNG W et al. Phase transition engineering for effective defect passivation to achieve highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 16, 2045-2055(2023).

    [130] ZHANG Kun, WANG Yang, TAO Mingquan et al. Efficient inorganic vapor-assisted defects passivation for perovskite solar module[J]. Advanced Materials, 35, 2211593(2023).

    [131] XU Yuan, LIU Fengli, LI Ruoshui et al. Mxene regulates the stress of perovskite and improves interface contact for high-efficiency carbon-based all-inorganic solar cells[J]. Chemical Engineering Journal, 461, 141895(2023).

    [132] DENG Yehao, ZHENG Xiaopeng, BAI Yang et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules[J]. Nature Energy, 3, 560-566(2018).

    [133] BU Tongle, LI Jing, LI Hengyi et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules[J]. Science, 372, 1327-1332(2021).

    [134] EGGERS H, SCHACKMAR F, ABZIEHER T et al. Inkjet-printed micrometer-thick perovskite solar cells with large columnar grains[J]. Advanced Energy Materials, 10, 1903184(2019).

    [135] CHEN Changchun, CHEN Jianxin, HAN Huchen et al. Perovskite solar cells are based on screen-printed thin films[J]. Nature, 612, 266-271(2022).

    [136] YE Fei, CHEN Han, XIE Fengxian et al. Soft-cover deposition of scaling-up uniform perovskite thin films for high-cost-performance solar cells[J]. Energy & Environmental Science, 9, 2295-2301(2016).

    [137] GREEN M A, DUNLOP E D, SIEFER G et al. Solar cell efficiency tables (Version 61)[J]. Progress in Photovoltaics, 31, 3-16(2022).

    Tools

    Get Citation

    Copy Citation Text

    Kun HE, Xiaoliang ZHAO, Jun WANG, Bixin LI, Bin DU, Yanlong WANG. Progress and Challenges of Efficient and Stable Halide-based Perovskite Solar Cells(Invited)[J]. Acta Photonica Sinica, 2023, 52(11): 1116001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 12, 2023

    Accepted: Jun. 28, 2023

    Published Online: Dec. 22, 2023

    The Author Email: Bixin LI (jkylbxin@hnfnu.edu.cn), Bin DU (dubin@xpu.edu.cn), Yanlong WANG (wangyanlong@dicp.ac.cn)

    DOI:10.3788/gzxb20235211.1116001

    Topics