Opto-Electronic Engineering, Volume. 51, Issue 8, 240079(2024)

Advances on the manipulation of structured beams with multiple degrees of freedom

Zhichao Zhang1,2,3, Lan Hai1,2,3, Shurui Zhang1,2,3, Chunqing Gao1,2,3, and Shiyao Fu1,2,3、*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Information Photonics Technology, Ministry of Industry and Information Technology, Beijing 100081, China
  • 3Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education, Beijing 100081, China
  • show less
    References(115)

    [1] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nat Photonics, 15, 253-262(2021).

    [2] Forbes A. Structured light from lasers[J]. Laser Photonics Rev, 13, 1900140(2019).

    [3] Li W, Yu J W, Yan A M. Research progress of vortex beam array generation technology[J]. Laser Optoelectron Prog, 57, 090002(2020).

    [4] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nat Photonics, 7, 868-874(2013).

    [5] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Commun Phys, 2, 153(2019).

    [6] Chang L, Liu S T, Bowers J E. Integrated optical frequency comb technologies[J]. Nat Photonics, 16, 95-108(2022).

    [7] Zuo J X, Lin X C. High-power laser systems[J]. Laser Photonics Rev, 16, 2100741(2022).

    [8] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications[J]. J Opt, 20, 123001(2018).

    [9] Zheng S J, Lin X, Huang Z Y et al. Light field regulation based on polarization holography[J]. Opto-Electron Eng, 49, 220114(2022).

    [10] Allen L, Beijersbergen M W, Spreeuw R J C et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes[J]. Phys Rev A, 45, 8185-8189(1992).

    [11] Zhang Z C, Hai L, Fu S Y et al. Advances on solid-state vortex laser[J]. Photonics, 9, 215(2022).

    [12] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Adv Opt Photonics, 3, 161-204(2011).

    [13] Zeng R Y, Zhao Q, Shen Y J et al. Structural stability of open vortex beams[J]. Appl Phys Lett, 119, 171105(2021).

    [14] Bai Y H, Lv H R, Fu X et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chin Opt Lett, 20, 012601(2022).

    [15] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat Photonics, 6, 488-496(2012).

    [16] Bozinovic N, Yue Y, Ren Y X et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 340, 1545-1548(2013).

    [17] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Adv Opt Photonics, 7, 66-106(2015).

    [18] Yu S Y. Potentials and challenges of using orbital angular momentum communications in optical interconnects[J]. Opt Express, 23, 3075-3087(2015).

    [19] Wang J. Advances in communications using optical vortices[J]. Photonics Res, 4, B14-B28(2016).

    [20] Fu S Y, Zhai Y W, Zhou H et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices[J]. Chin Opt Lett, 17, 080602(2019).

    [21] Fu S Y, Zhai Y W, Zhou H et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying[J]. Opt Express, 27, 33111-33119(2019).

    [22] Fu S Y, Zhai Y W, Zhou H et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding[J]. Opt Lett, 44, 4753-4756(2019).

    [23] Lavery M P J, Speirits F C, Barnett S M et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 341, 537-540(2013).

    [24] Lavery M P J, Barnett S M, Speirits F C et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body[J]. Optica, 1, 1-4(2014).

    [25] Fang L, Padgett M J, Wang J. Sharing a common origin between the rotational and linear doppler effects (Laser Photonics Rev. 11(6)/2017)[J]. Laser Photonics Rev, 11, 1770064(2017).

    [26] Fu S Y, Wang T L, Zhang Z Y et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions[J]. Opt Express, 25, 20098-20108(2017).

    [27] Zhang W H, Gao J S, Zhang D K et al. Free-space remote sensing of rotation at the photon-counting level[J]. Phys Rev Appl, 10, 044014(2018).

    [28] Qiu S, Liu T, Ren Y et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect[J]. Opt Express, 27, 24781-24792(2019).

    [29] Zhai Y W, Fu S Y, Yin C et al. Detection of angular acceleration based on optical rotational Doppler effect[J]. Opt Express, 27, 15518-15527(2019).

    [30] Zhai Y W, Fu S Y, Zhang J Q et al. Remote detection of a rotator based on rotational Doppler effect[J]. Appl Phys Express, 13, 022012(2020).

    [31] Padgett M, Bowman R. Tweezers with a twist[J]. Nat Photonics, 5, 343-348(2011).

    [32] Chen M Z, Mazilu M, Arita Y et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Opt Lett, 38, 4919-4922(2013).

    [33] Gecevičius M, Drevinskas R, Beresna M et al. Single beam optical vortex tweezers with tunable orbital angular momentum[J]. Appl Phys Lett, 104, 231110(2014).

    [34] Liang Y S, Yao B L, Ma B H et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Opt Sin, 36, 309001(2016).

    [35] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Adv Photonics, 3, 034001(2021).

    [36] Fickler R, Lapkiewicz R, Huber M et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nat Commun, 5, 4502(2014).

    [37] Cao H, Gao S C, Zhang C et al. Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber[J]. Optica, 7, 232-237(2020).

    [38] Li Z X, Zhu D, Lin P C et al. High-dimensional entanglement generation based on a Pancharatnam-Berry phase metasurface[J]. Photonics Res, 10, 2702-2707(2022).

    [39] Shen Y J, Rosales-Guzmán C. Nonseparable states of light: from quantum to classical[J]. Laser Photonics Rev, 16, 2100533(2022).

    [40] Wan Z S, Wang H, Liu Q et al. Ultra-degree-of-freedom structured light for ultracapacity information carriers[J]. ACS Photonics, 10, 2149-2164(2023).

    [41] Liu Y L, Dong Z, Chen Y H et al. Research advances of partially coherent beams with novel coherence structures: engineering and applications[J]. Opto-Electron Eng, 49, 220178(2022).

    [42] Zhang D K, Feng X, Cui K Y et al. Identifying orbital angular momentum of vectorial vortices with pancharatnam phase and stokes parameters[J]. Sci Rep, 5, 11982(2015).

    [43] Niziev V G, Nesterov A V. Influence of beam polarization on laser cutting efficiency[J]. J Phys D: Appl Phys, 32, 1455-1461(1999).

    [44] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Appl Phys A Mater Sci Process, 86, 329-334(2007).

    [45] Zhao W Q, Tang F, Qiu L R et al. Research status and application on the focusing properties of cylindrical vector beams[J]. Acta Phys Sin, 62, 054201(2013).

    [46] Zhou Z H, Tan Q F, Jin G F. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams[J]. Chin Opt Lett, 8, 1178-1181(2010).

    [47] Töppel F, Aiello A, Marquardt C et al. Classical entanglement in polarization metrology[J]. New J Phys, 16, 073019(2014).

    [48] Shen Y J, Zhang Q, Shi P et al. Optical skyrmions and other topological quasiparticles of light[J]. Nat Photonics, 18, 15-25(2024).

    [49] Lazarev G, Chen P J, Strauss J et al. Beyond the display: phase-only liquid crystal on Silicon devices and their applications in photonics [Invited][J]. Opt Express, 27, 16206-16249(2019).

    [50] Mirhosseini M, Magaña-Loaiza O S, Chen C C et al. Rapid generation of light beams carrying orbital angular momentum[J]. Opt Express, 21, 30196-30203(2013).

    [51] Ren Y X, Li M, Huang K et al. Experimental generation of Laguerre-Gaussian beam using digital micromirror device[J]. Appl Opt, 49, 1838-1844(2010).

    [52] Chen Y, Fang Z X, Ren Y X et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Appl Opt, 54, 8030-8035(2015).

    [53] Ji W, Lee C H, Chen P et al. Meta-q-plate for complex beam shaping[J]. Sci Rep, 6, 25528(2016).

    [54] Zhou H, Yang J Q, Gao C Q et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation[J]. Opt Mater Express, 9, 2699-2707(2019).

    [55] Shaltout A M, Lagoudakis K G, Van De Groep J et al. Spatiotemporal light control with frequency-gradient metasurfaces[J]. Science, 365, 374-377(2019).

    [56] Shaltout A M, Shalaev V M, Brongersma M L. Spatiotemporal light control with active metasurfaces[J]. Science, 364, eaat3100(2019).

    [57] Jones P H, Rashid M, Makita M et al. Sagnac interferometer method for synthesis of fractional polarization vortices[J]. Opt Lett, 34, 2560-2562(2009).

    [58] Liu S, Li P, Peng T et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Opt Express, 20, 21715-21721(2012).

    [59] Li P, Zhang Y, Liu S et al. Generation of perfect vectorial vortex beams[J]. Opt Lett, 41, 2205-2208(2016).

    [60] Liu S, Qi S X, Zhang Y et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Res, 6, 228-233(2018).

    [61] Maurer C, Jesacher A, Fürhapter S et al. Tailoring of arbitrary optical vector beams[J]. New J Phys, 9, 78(2007).

    [62] Wang X L, Ding J P, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Opt Lett, 32, 3549-3551(2007).

    [63] Xie Y Y, Cheng Z J, Liu X et al. Simple method for generation of vector beams using a small-angle birefringent beam splitter[J]. Opt Lett, 40, 5109-5112(2015).

    [64] Shen Y J, Martínez E C, Rosales-Guzmán C. Generation of optical skyrmions with tunable topological textures[J]. ACS Photonics, 9, 296-303(2022).

    [65] Moreno I, Davis J A, Cottrell D M et al. Encoding high-order cylindrically polarized light beams[J]. Appl Opt, 53, 5493-5501(2014).

    [66] Fu S Y, Gao C Q, Shi Y et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer[J]. Opt Lett, 40, 1775-1778(2015).

    [67] Fu S Y, Wang T L, Gao C Q. Generating perfect polarization vortices through encoding liquid-crystal display devices[J]. Appl Opt, 55, 6501-6505(2016).

    [68] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Phys Rev Lett, 96, 163905(2006).

    [69] Yi X N, Ling X H, Zhang Z Y et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces[J]. Opt Express, 22, 17207-17215(2014).

    [70] Fu S Y, Gao C Q, Wang T L et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders[J]. Opt Lett, 41, 5454-5457(2016).

    [71] Yue F Y, Wen D D, Zhang C M et al. Multichannel polarization-controllable superpositions of orbital angular momentum states[J]. Adv Mater, 29, 1603838(2017).

    [72] Zhang X, Huang L L, Zhao R Z et al. Multiplexed generation of generalized vortex beams with on-demand intensity profiles based on metasurfaces[J]. Laser Photonics Rev, 16, 2100451(2022).

    [73] Wu H S, Zeng Q J, Wang X R et al. Polarization-dependent phase-modulation metasurface for vortex beam (de)multiplexing[J]. Nanophotonics, 12, 1129-1135(2023).

    [74] Ke L, Zhang S M, Li C X et al. Research progress on hybrid vector beam implementation by metasurfaces[J]. Opto-Electron Eng, 50, 230117(2023).

    [75] Naidoo D, Roux F S, Dudley A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nat Photonics, 10, 327-332(2016).

    [76] Fan J T, Zhao J, Shi L P et al. Two-channel, dual-beam-mode, wavelength-tunable femtosecond optical parametric oscillator[J]. Adv Photonics, 2, 045001(2020).

    [77] Song R, Gao C Q, Zhou H et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm[J]. Opt Lett, 45, 4626-4629(2020).

    [78] Song R, Liu X T, Fu S Y et al. Simultaneous tailoring of longitudinal and transverse mode inside an Er: YAG laser[J]. Chin Opt Lett, 19, 111404(2021).

    [79] Sroor H, Huang Y W, Sephton B et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 14, 498-503(2020).

    [80] Shen Y J, Wang Z Y, Fu X et al. SU(2) Poincare sphere: A generalized representation for multidimensional structured light[J]. Phys Rev A, 102, 031501(2020).

    [81] Shen Y J. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light[J]. J Opt, 23, 124004(2021).

    [82] Chen Y F, Jiang C H, Lan Y P et al. Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity[J]. Phys Rev A, 69, 053807(2004).

    [83] Dingjan J, van Exter M P, Woerdman J P. Geometric modes in a single-frequency Nd: YVO4 laser[J]. Opt Commun, 188, 345-351(2001).

    [84] Shen Y J, Yang X L, Fu X et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator[J]. Appl Opt, 57, 9543-9549(2018).

    [85] Tung J C, Liang H C, Lu T H et al. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter[J]. Opt Express, 24, 22796-22805(2016).

    [86] Shen Y J, Yang X L, Naidoo D et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser: erratum[J]. Optica, 7, 1705(2020).

    [87] Wan Z S, Wang Z Y, Yang X L et al. Digitally tailoring arbitrary structured light of generalized ray-wave duality[J]. Opt Express, 28, 31043-31056(2020).

    [88] Shen Y J, Nape I, Yang X L et al. Creation and control of high-dimensional multi-partite classically entangled light[J]. Light Sci Appl, 10, 50(2021).

    [89] Wang Z Y, Shen Y J, Naidoo D et al. Astigmatic hybrid SU(2) vector vortex beams: towards versatile structures in longitudinally variant polarized optics[J]. Opt Express, 29, 315-329(2021).

    [90] Wan Z S, Shen Y J, Liu Q et al. Multipartite classically entangled scalar beams[J]. Opt Lett, 47, 2052-2055(2022).

    [91] Pan J, Wang Z Y, Zhan Z Y et al. Multiaxial super-geometric mode laser[J]. Opt Lett, 48, 1630-1633(2023).

    [92] Wan Z S, Shen Y J, Wang Z Y et al. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications[J]. Light Sci Appl, 11, 144(2022).

    [93] Hai L, Zhang Z C, Liu S L et al. Intra-cavity laser manipulation of high-dimensional non-separable states[J]. Laser Photonics Rev, 18, 2300593(2024).

    [94] Grier D G. A revolution in optical manipulation[J]. Nature, 424, 810-816(2003).

    [95] Fu S Y, Wang T L, Gao C Q. Perfect optical vortex array with controllable diffraction order and topological charge[J]. J Opt Soc America A, 33, 1836-1842(2016).

    [96] Fu S Y, Zhang S K, Wang T L et al. Rectilinear lattices of polarization vortices with various spatial polarization distributions[J]. Opt Express, 24, 18486-18491(2016).

    [98] Wang H, Fu S Y, Gao C Q. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom[J]. Opt Express, 29, 10811-10824(2021).

    [99] Fu S Y, Wang T L, Zhang Z Y et al. Selective acquisition of multiple states on hybrid Poincare sphere[J]. Appl Phys Lett, 110, 191102(2017).

    [100] Shang Z J, Fu S Y, Hai L et al. Multiplexed vortex state array toward high-dimensional data multicasting[J]. Opt Express, 30, 34053-34063(2022).

    [101] Piccardo M, de Oliveira M, Toma A et al. Vortex laser arrays with topological charge control and self-healing of defects[J]. Nat Photonics, 16, 359-365(2022).

    [102] Yessenov M, Hall L A, Schepler K L et al. Space-time wave packets[J]. Adv Opt Photonics, 14, 455-570(2022).

    [103] Cao Q, Zhan Q W. Spatiotemporal sculpturing of light and recent development in spatiotemporal optical vortices wavepackets (Invited)[J]. Acta Photonica Sin, 51, 0151102(2022).

    [104] Ni J C, Wang C W, Zhang C C et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light Sci Appl, 6, e17011(2017).

    [105] Ruffato G. Non-destructive OAM measurement via light-matter interaction[J]. Light Sci Appl, 11, 55(2022).

    [106] Zhao Z, Song H, Zhang R Z et al. Dynamic spatiotemporal beams that combine two independent and controllable orbital-angular-momenta using multiple optical-frequency-comb lines[J]. Nat Commun, 11, 4099(2020).

    [107] Chong A, Wan C H, Chen J et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nat Photonics, 14, 350-354(2020).

    [108] Wan C H, Chen J, Chong A et al. Photonic orbital angular momentum with controllable orientation[J]. Natl Sci Rev, 9, nwab149(2022).

    [109] Cao Q, Zheng P K, Zhan Q W. Vectorial sculpturing of spatiotemporal wavepackets[J]. APL Photonics, 7, 096102(2022).

    [110] Wan C H, Cao Q, Chen J et al. Toroidal vortices of light[J]. Nat Photonics, 16, 519-522(2022).

    [111] Chen W, Liu Y, Yu A Z et al. Observation of chiral symmetry breaking in toroidal vortices of light[J]. Phys Rev Lett, 132, 153801(2024).

    [112] Papasimakis N, Raybould T, Fedotov V A et al. Pulse generation scheme for flying electromagnetic doughnuts[J]. Phys Rev B, 97, 201409(2018).

    [113] Shen Y J, Yu B S, Wu H J et al. Topological transformation and free-space transport of photonic hopfions[J]. Adv Photonics, 5, 015001(2023).

    [114] Zdagkas A, McDonnell C, Deng J H et al. Observation of toroidal pulses of light[J]. Nat Photonics, 16, 523-528(2022).

    [115] Guo C, Xiao M, Orenstein M et al. Structured 3D linear space-time light bullets by nonlocal nanophotonics[J]. Light Sci Appl, 10, 160(2021).

    Tools

    Get Citation

    Copy Citation Text

    Zhichao Zhang, Lan Hai, Shurui Zhang, Chunqing Gao, Shiyao Fu. Advances on the manipulation of structured beams with multiple degrees of freedom[J]. Opto-Electronic Engineering, 2024, 51(8): 240079

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 31, 2024

    Accepted: Apr. 28, 2024

    Published Online: Nov. 12, 2024

    The Author Email: Shiyao Fu (付时尧)

    DOI:10.12086/oee.2024.240079

    Topics