Spectroscopy and Spectral Analysis, Volume. 42, Issue 11, 3615(2022)

Palmprint Recognition Method Based on Multispectral Image Fusion

Xue-bin XU*, Xiao-min XING1; 2; *;, Mei-juan AN1; 2;, Shu-xin CAO1; 2;, Kan MENG1; 2;, and Long-bin LU1; 2;
Author Affiliations
  • 1. The Department of Data Science and Big Data Technology, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
  • show less
    Figures & Tables(21)
    Schemetic diagram of the multispectral palmprint imaging device
    Multispectral palmprint ROI extraction process(a): Near-infrared palmprint; (b): Binarization; (c): Maximum incision circle; (d): Near-infrared palmprint ROI
    Multispectral palmprint ROI extraction process
    Mapping of local maxima and local minima(a): Source signal; (b): Local maxima map; (c): Local minima map
    Decompositions of a palmprint image using FABEMD(a): Green ROI; (b): BIMF1; (c): BIMF2; (d): BIMF3; (e): BIMF4; (f): The residue; (g): The sum of K BIMF
    Near-infrared palmprint image processing(a): NIR ROI; (b): SI; (c): ${{\tilde{S}}_{I}}$(Bezier interpolation); (d): S'I(feature refinement)
    Multispectral palmprint fusion image(a): Fused images without feature compression;(b): Fused images with feature compression
    Multispectral palmprinu fusion process(a): SR (red in FABEMD); (b): SG; (c): SB; (d): S″I(NIR with feature compression); (e): Fusion process
    Network architecture of improved residual channel attention network (IRCANet)
    Original ResBlock and ResStageBlock
    Improved residual block with channel attention
    Multispectral palmprint samples in the PolyU database
    Accuracies of different K values in FABEMD
    Accuracies of different fusion strategies for multispectral (R, G, B, N) palmprint images
    Optimal results of different residual structures for multispectral (R, G, B, N) palmprint images
    Recognition effect of different mainstream networks for multispectral palmprint fusion images(a): Recognition trends; (b): Accuracy contrast
    • Table 1. Average accuracies of different IRCANet parameters

      View table
      View in Article

      Table 1. Average accuracies of different IRCANet parameters

      学习率批大小迭代次数平均精准度/%
      0.001410097.88
      0.001420098.93
      0.001610099.67
      0.001620099.59
      0.000 1810099.62
    • Table 2. Accuracies of multispectral combinations under different fusion strategies

      View table
      View in Article

      Table 2. Accuracies of multispectral combinations under different fusion strategies

      融合光谱带精准度/%
      直接加权
      融合
      红外背景
      重建
      红外背景重建
      及特征细化
      Red, NIR92.0495.0899.49
      Green, NIR90.6393.3599.22
      Blue, NIR91.7294.4199.37
      Red, Green, NIR91.1294.9299.05
      Blue, Red, NIR90.7695.0199.45
      Blue, Green, NIR90.6893.7799.19
      Blue, Green, Blue, NIR90.9295.1299.67
    • Table 3. Accuracies of multispectral combinations under different residual structures

      View table
      View in Article

      Table 3. Accuracies of multispectral combinations under different residual structures

      融合光谱带精准度率/%
      传统残差
      结构
      分阶段残
      差结构
      结合注意力
      机制分阶段
      残差结构
      Red, Blue96.3791.2399.25
      Green, Red95.5790.5599.41
      Blue, Green93.1089.5899.51
      Red, NIR96.9392.6699.09
      Green, NIR95.0391.1199.22
      Blue, NIR95.7090.9999.37
      Red, Green, Blue96.7992.1399.10
      Red, Green, NIR94.7190.6099.05
      Blue, Red, NIR95.3691.5199.55
      Blue, Green, NIR96.8591.7499.49
      Blue, Green, Blue, NIR94.0390.8099.67
    • Table 4. Comparison of multispectral palmprint recognition algorithms

      View table
      View in Article

      Table 4. Comparison of multispectral palmprint recognition algorithms

      算法Accuracy/%
      Image-level fusion by DWT[18]99.03
      Matching score-level fusion[10]99.43
      QPCA+QDWT[19]98.83
      Deep Scattering Network[20]99.40
      Joint Pixel and Feature Alignment[21]99.16
      Inception-ResNet[22]98.74
      本算法99.67
    • Table 5. Time cost of the proposed method

      View table
      View in Article

      Table 5. Time cost of the proposed method

      算法步骤平均运行时间/s
      FABEMD0.175×4
      近红外背景重建及特征细化0.186
      图像融合0.002 1
      分类识别0.001 5
      总的识别时间0.889 6
    Tools

    Get Citation

    Copy Citation Text

    Xue-bin XU, Xiao-min XING, Mei-juan AN, Shu-xin CAO, Kan MENG, Long-bin LU. Palmprint Recognition Method Based on Multispectral Image Fusion[J]. Spectroscopy and Spectral Analysis, 2022, 42(11): 3615

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 8, 2022

    Accepted: --

    Published Online: Nov. 23, 2022

    The Author Email: XU Xue-bin (ccp9999@126.com)

    DOI:10.3964/j.issn.1000-0593(2022)11-3615-11

    Topics