Journal of Synthetic Crystals, Volume. 50, Issue 8, 1593(2021)

Development Status of Plasma Electrode Pockels Cell

ZHANG Jun, XIONG Qian, WU Zhenhai, LONG Jiao, ZHAO Junpu, ZHENG Jiangang, ZHANG Xiongjun, ZHENG Kuixing, and WEI Xiaofeng
Author Affiliations
  • [in Chinese]
  • show less
    References(30)

    [3] [3] MOSES E I. Advances in inertial confinement fusion at the National Ignition Facility (NIF)[J]. Fusion Engineering and Design, 2010, 85(7/8/9): 983-986.

    [4] [4] SPAETH M L, MANES K R, KALANTAR D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145.

    [10] [10] DANSON C N, HAEFNER C, BROMAGE J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. DOI:10.1017/hpl.2019.36.

    [11] [11] BAYRAMIAN A, ARMSTRONG P, AULT E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387.

    [12] [12] MASON P, DIVOKY' M, ERTEL K, et al. Kilowatt average power 100 J-level diode pumped solid state laser[J]. Optica, 2017, 4(4): 438-439.

    [13] [13] BAYRAMIAN A, ACEVES S, ANKLAM T, et al. Compact, efficient laser systems required for laser inertial fusion energy[J]. Fusion Science and Technology, 2011, 60(1): 28-48.

    [14] [14] ZHENG J G, JIANG X Y, YAN X W, et al. Progress of the 10 J water-cooled Yb∶YAG laser system in RCLF[J]. High Power Laser Science and Engineering, 2014, 2: e27. DOI:10.1017/hpl.2014.29.

    [15] [15] GONALVS-NOVO T, ALBACH D, VINCENT B, et al. 14 J / 2 Hz Yb3+∶YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855.

    [16] [16] WENG Z H, RUAN J J, LIN S H, et al. Fast magneto-optic switch based on nanosecond pulses[C]//2011: 095001.

    [27] [27] PERLOV D, LIVNEH S, CZECHOWICZ P, et al. Progress in growth of large β-BaB2O4 single crystals[J]. Crystal Research and Technology, 2011, 46(7): 651-654.

    [28] [28] LIU B A, HU G H, ZHAO Y, et al. Laser induced damage of DKDP crystals with different deuterated degrees[J]. Optics & Laser Technology, 2013, 45: 469-472.

    [31] [31] ZHANG L S, YU G W, ZHOU H L, et al. Study on rapid growth of 98% deuterated potassium dihydrogen phosphate (DKDP) crystals[J]. Journal of Crystal Growth, 2014, 401: 190-194.

    [33] [33] AN C H, FENG K, WANG W, et al. Study on thermal field in fly-cutting process of DKDP crystal[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5/6/7/8): 3013-3024.

    [36] [36] RHODES M A, WOODS B, DEYOREO J J, et al. Performance of large-aperture optical switches for high-energy inertial-confinement fusion lasers[J]. Applied Optics, 1995, 34(24): 5312-5325.

    [37] [37] ARNOLD P A, OLLIS C W, HINZ A F, et al. Deployment, commissioning, and operation of plasma electrode Pockels cells in the National Ignition Facility[C]//Proc SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory Ⅱ: the National Ignition Facility, 2004, 5341: 156-167.

    [39] [39] GARDELLE J, PASINI E. A simple operation of a plasma-electrode Pockel’s cell for the laser megajoules[J]. Journal of Applied Physics, 2002, 91(5): 2631-2636.

    [40] [40] ZHANG J, WU D S, ZHENG J G, et al. Single-pulse driven, large-aperture 2×1 array plasma-electrodes optical switch for SG-Ⅱ upgrading facility[C]//Proc SPIE 9294, International Symposium on Optoelectronic Technology and Application 2014: Development and Application of High Power Lasers, 2014, 9294: 92940 N.

    [41] [41] ANDREEV N F, BABIN A A, DAVYDOV V S, et al. Wide-aperture plasma-electrode Pockels cell[J]. Plasma Physics Reports, 2011, 37(13): 1219-1224.

    [42] [42] BOCHKOV E I, BABICH L P, BEL’KOV S A, et al. Computation of optimal operation voltage of the neon-filled plasma Pockels cell[J]. IEEE Transactions on Plasma Science, 2020, 48(9): 3122-3127.

    [43] [43] ZHANG X J, WU D S, ZHANG J, et al. One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application[J]. Optics Express, 2009, 17(19): 17164.

    [44] [44] ZHOU X J, GUO W Q, ZHANG X J, et al. One-dimensional model of a plasma-electrode optical switch driven by one-pulse process[J]. Optics Express, 2006, 14(7): 2880-2887.

    [45] [45] ANDREEV N F, BESPALOV V I, BREDIKHIN V I, et al. A wide-aperture Pockels cell with three ring electrodes[J]. Quantum Electronics, 2004, 34(4): 381-384.

    [46] [46] KURTEV S Z, DENCHEV O E, SAVOV S D. Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd∶YAG lasers and their compensation[J]. Applied Optics, 1993, 32(3): 278-285.

    [49] [49] CAO D X, ZHANG X J, ZHENG W G, et al. Thermal distortion and birefringence in repetition-rate plasma electrode Pockels cell for high average power[J]. Chinese Optics Letters, 2007, 5(5): 292-294.

    [50] [50] ZHANG J, ZHANG X J, WU D S, et al. A reflecting Pockels cell with aperture scalable for high average power multipass amplifier systems[J]. Optics Express, 2010, 18(S2): A185.

    [51] [51] ZHANG J, ZHANG X J, ZHENG J G, et al. Aperture scalable, high-average power capable, hybrid-electrode Pockels cell[J]. Optics Letters, 2017, 42(9): 1676-1679.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Jun, XIONG Qian, WU Zhenhai, LONG Jiao, ZHAO Junpu, ZHENG Jiangang, ZHANG Xiongjun, ZHENG Kuixing, WEI Xiaofeng. Development Status of Plasma Electrode Pockels Cell[J]. Journal of Synthetic Crystals, 2021, 50(8): 1593

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 31, 2021

    Accepted: --

    Published Online: Nov. 6, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics